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A Weighted Fidelity and Regularization-Based

Method for Mixed or Unknown Noise
Removal From Images on Graphs
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and ZhiWu Li

Abstract—Image denoising technologies in a Euclidean domain
have achieved good results and are becoming mature. However,
in recent years, many real-world applications encountered in
computer vision and geometric modeling involve image data
defined in irregular domains modeled by huge graphs, which
results in the problem on how to solve image denoising problems
defined on graphs. In this paper, we propose a novel model for
removing mixed or unknown noise in images on graphs. The
objective is to minimize the sum of a weighted fidelity term and
a sparse regularization term that additionally utilizes wavelet
frame transform on graphs to retain feature details of images
defined on graphs. Specifically, the weighted fidelity term with
£1-norm and £;-norm is designed based on a analysis of the
distribution of mixed noise. The augmented Lagrangian and
accelerated proximal gradient methods are employed to achieve
the optimal solution to the problem. Finally, some supporting
numerical results and comparative analyses with other denoising
algorithms are provided. It is noted that we investigate image
denoising with unknown noise or a wide range of mixed noise,
especially the mixture of Poisson, Gaussian, and impulse noise.
Experimental results reported for synthetic and real images
on graphs demonstrate that the proposed method is effective
and efficient, and exhibits better performance for the removal
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of mixed or unknown noise in images on graphs than other
denoising algorithms in the literature. The method can effectively
remove mixed or unknown noise and retain feature details of
images on graphs. It delivers a new avenue for denoising images
in irregular domains.

Index Terms— Tight wavelet frame, variational model, mixed
or unknown noise, image on graph, image denoising.

I. INTRODUCTION

MAGES are easily corrupted by noise during processes of

image acquisition and transmission. Due to their inferior
characteristics, noisy images cannot be directly used in image
analysis or processing, such as image compression, image
segmentation and image understanding. Image denoising, as a
fundamental image operation, aims to obtain high-quality
images by removing noise while retaining feature details in
images as much as possible before proceeding with further
image analysis or processing. Generally speaking, the noise
encountered in images can be classified into two categories:
additive and multiplicative noise. The main forms of additive
noise are additive white Gaussian noise and impulse noise
[1]-[3]. Gaussian noise is mainly introduced by the ther-
mal motion in camera [4]. Impulse noise is caused by
bit errors appearing in communications [5], [6]. Generally,
it exhibits two types, i.e., salt and pepper impulse noise
and random-valued impulse noise. The common form of
multiplicative noise is Poisson noise [7]. It is mostly produced
by low photons, like fluorescence microscopy and emission
tomography [8].

Over the past two decades, in order to suppress noise,
a large number of image denoising techniques have been
developed [8]-[17]. Such techniques are generally classified
into four categories, i.e., spatial domain-based methods
[13], [18]-[20], transform domain-based methods [10], [21],
[22], dictionary learning-based methods [15], [16], [23]-[27]
and deep convolutional neural network (CNN)-based
methods [28]-[32].

Spatial domain-based methods primarily include local and
non-local filters that adequately manipulate the similarities
among image pixels or patches [13], [18]-[20], [33]. Over the
past three decades, a series of local filters such as Gaussian
filter [18], anisotropic filtering [13], and bilateral filter [4], [19]
were designed. Generally, such local filters have low time
complexity, but cannot work well when noise levels increase.
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In contrast, nonlocal filters can take advantage of the self-
similarity of natural images in a nonlocal manner. One of the
well-known nonlocal filtering algorithms is a nonlocal means
algorithm [20] that weights neighboring patches to obtain
an anchor (denoised) patch. The idea of nonlocal means is
also applied to transform domain-based [17] and dictionary
learning-based algorithms [34]. Although nonlocal filtering
algorithms are superior to local filtering algorithms in the
presence of high-level noise, they bring over-smoothing.

Transform domain-based methods [10], [21], [22] typically
represent images in a fixed basis before removing noise
in images, which exploit similarities of transformed coeffi-
cients. A large number of orthonormal basises, like wavelets
[10], [35], curvelets [22], and contourlets [21], have been
proposed. One of the most popular transform methods con-
cerns wavelet analysis. Wavelets have been successfully
applied in image processing for over three decades [10],
thanks to their ability to simultaneously localize image
data in both time and frequency domains. Tight wavelet
frames differing from general wavelet methods can pro-
vide redundant representations of images [12]. This redun-
dancy enables them to be flexibly applied to various
areas such as image denoising [12], [36], image restoration
[9], [11] and surface reconstruction [37], [38].

Dictionary learning-based methods [15], [16], [24]-[27]
also represent images in transform domains. However, the dif-
ference from the transform domain-based methods is that
they employ a sparse representation on a redundant dictionary
[15], [16]. There exist some prevailing classical algorithms
such as K-clustering with singular value decomposition [24],
learned simultaneous sparse coding [25], [39], and clustering-
based sparse representation [27]. Even though most of them
can achieve good performance in image denoising, they are
computationally expensive.

Deep CNN-based methods have achieved considerable
progress on some low level vision tasks [28]-[32], e.g.,
rain streak removal [31], Gaussian denoising [32] and non-
blind deconvolution [30]. However, these CNN-based methods
either do not take partially known degradations into considera-
tion, or simply address this issue by learning a direct mapping
from degraded images to ground-truth ones. Additionally,
their visible limitation is that they are highly dependent on
a training set of degraded and ground-truth image pairs and
the calculation costs are large.

Recently, by combining a transform domain and sparse
representation, a variety of achievements for image denoising
have been made [8], [9], [11], [12], [14], [17], [40]-[43].
One of the most typical techniques is a wavelet frame-
based sparse variational model. For instance, Dong et al. [11]
address a blind inpainting model based on variation and tight
wavelet frames in a Euclidean domain, which can simultane-
ously identify and recover damaged pixels of noisy images.
Gong et al. [14] demonstrate that a sparse variational model
consists of a universal fidelity term and a wavelet frame-based
regularization term is able to remove mixed or unknown noise
in images in a Euclidean domain, and apply a novel algorithm
to solve this model. Li et al. [8] propose a variational model
based on a weighted fidelity and tight wavelet frames for
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Poisson noise removal from images in a Euclidean domain.
The well-known alternating direction method of multipliers
is applied to solve this model. Moreover, the model is also
extended to the removal of mixed Poisson-Gaussian noise.
Recently, Shen et al. [17] present a wavelet frame-based
iterative algorithm for the removal of mixed Gaussian and
impulse noise, which takes advantage of directional complex
tight framelets and sparse minimization. Through the literature
review, we conclude that extensive studies have been made
for image denoising tasks, especially mixed noise removal.
However, they mainly consider mixed noise removal in a
Euclidean domain. Yet the obtained results are far from
being adequate. There exist no works considering mixed noise
removal on graphs. As a result, we identify three issues calling
for further improvement:

1) Many practical problems in computer vision and geo-
metric modeling involve image data defined in more
topologically complicated domains rather than a Euclid-
ean domain. As graphs can be flexibly represented in
either a Euclidean domain or irregular domains [44],
researchers have recently started to analyze and manipu-
late image data defined on graphs [37], [44]-[47]. In real-
world applications, graphs can be modeled in general
as a certain discretization or random sample from some
Riemannian manifolds [48]. Images on graphs can be
considered as scalar functions defined on vertices of
graphs. Due to the complexity of topological structures
of irregular domains, it is challenging to design effi-
cient computing methods for solving image processing
problems defined on graphs. Recently, researchers try to
solve image processing problems defined on graphs, and
made some encouraging achievements [37], [44], [46],
[47], [49]. For instance, Hammond et al. [44] propose
a general wavelet transform on graphs and make some
potential applications. Dong [37] presents a fast discrete
tight wavelet frame transform in a graph domain, which
is applied to many practical problems such as graph
data denoising and semi-supervised clustering. Wang and
Yang [46] introduce a variational method based on tight
wavelet frames to remove Poisson noise in images on
graphs. More recently, Wang et al. [S0] propose a wavelet
frame-based fuzzy clustering algorithm and apply it to
image segmentation on graphs.

2) In real-world applications, images on graphs are often
corrupted by different types of mixed or unknown
noise, such as mixed Poisson-Gaussian noise and mixed
Gaussian and impulse noise, rather than single noise.
Many existing techniques for mixed noise removal
appearing in a Euclidean domain are detection-based
methods. To overcome their shortcomings, some denois-
ing techniques, e.g. [15], tentatively encode noise-
corrupted patch while depending on prior knowledge of
mixed noise. Due to the complicated distribution of mixed
or unknown noise, image denoising techniques for their
removal are not well exploited [51]. Moreover, most of
these existing methods cannot be directly extended to
mixed or unknown noise removal on graphs due to the
nonlinear nature of graphs.
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Fig. 1. The framework of the proposed method.

3) Specifically, this work investigates image denoising with
unknown noise and the mixture of Poisson, Gaussian,
and impulse noise. To the best of our knowledge, there
exists only a single attempt [14] appearing in a Euclidean
domain to concern the removal of such a wide range of
noise.

The goal of this work is to develop a wavelet frame-
based variational model that can be applied to suppress
mixed or unknown noise in images on graphs. The aim of
variational models is to minimize the sum of the fidelity and
regularization terms. The fidelity term can be designed based
on different noise distribution characteristics. For example,
an {-norm fidelity term has been successfully used for
Gaussian noise removal, and an ¢j-norm fidelity term has
been well proved to be effective for removing both impulse
noise and mixed Gaussian and impulse noise [3]. Recently,
Gong et al. [14] first demonstrate that an {j-norm fidelity
term is suitable for generic noise removal from images in a
Euclidean domain when combined with an £;-norm fidelity
term. Inspired by [14], we develop a weighted fidelity term to
remove a wide range of mixed or unknown noise in images
on graphs.

This paper makes three main contributions as follows:

1) We extend mixed or unknown noise removal from a
Euclidean domain to graph domain. Due to the nonlin-
ear nature of graphs and the corresponding algorithms
[37], [44], it is challenging to address image denoising
problems defined on graphs.

2) We illustrate a weighted variational model for removing
mixed or unknown noise in images on graphs. The objec-
tive is to minimize the sum of a weighted fidelity term and
an {1-norm regularization term that additionally utilizes
the wavelet frame transform on graphs for retaining
feature details of images defined on graphs. Specifically,
the weighted fidelity term with £1-norm and {;-norm is
designed based on analysis of the distribution of mixed
noise. The augmented Lagrangian method (ALM) [52]
and accelerated proximal gradient method (APGM) [12]
are employed to deal with this model. The framework of
the proposed method is portrayed in Fig. 1.

3) We expand the range of noise removal in image denoising
problems, especially, image denoising problems defined
on graphs. We apply the proposed method to remove
unknown noise and the mixture of Poisson, Gaussian, and
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impulse noise in images on graphs. Although such noise
frequently occurs in the process of image acquisition,
little work has been devoted to the removal of such noise.
This work offers a new direction for suppressing mixed
or unknown noise in images in irregular domains.

This paper is structured as follows. Section II briefly
introduces preliminaries involved in the proposed model and
algorithm. The proposed method is described in Section III.
In Section IV, supporting experiments are provided. Section V
draws conclusions. The convergence results of the proposed
algorithm are illustrated in the Appendix.

II. PRELIMINARIES

To understand and analyze images and data on graphs,
we first review the spectral graph theory, especially the graph
Laplacian, which is widely used to reveal the geometric prop-
erties of the graph. Furthermore, we introduce the construction
of a tight wavelet frame transform on graphs by the assistance
of the graph Laplacian. Full details can be found in [37].

A. Spectral Graph Theory

Let G = (V, E, ) be a weighted graph composed of a
vertex set V. = {vy,---,vy} representing a collection of
(x, y, z)-coordinates of N vertices, an edge set E C V x V,
and a weight function w : E > R™ that is generally expressed
as

—llvi—v;l1*/p
2

wjj =e€ p >0, (1)

where v; and v; denote two arbitrary vertices in V and || - ||
denotes their Euclidean distance. If vertex »; is not connected
to vertex v;, then w;; = 0. Since graph G is undirected,
we have w;; = wj;.
The adjacency matrix A of graph G is denoted as
N

A = n. Let di = > a;; be the degree
j=l1

of each vertex v;. The degree matrix D is defined as
D = diag{d,, --- ,dn}. Thus, the Laplacian martix of graph

G can be formulated as

(@ij)i, j=1,--,

L=D-A.

Let {(4;, u; )}1—1 be the set of N pairs of its eigenvalues and
eigenvectors of L. Since L is symmetric and positive semi-
definite, we have Ay > ---> 1 > 41 = 0.

B. Wavelet Frame Transform on Graphs

Based on the eigenvalue decomposition of graph Laplacian
matrix L, we describe the construct of the tight wavelet
frame transform on graph G. Let us define an image function
g : V > R on graph G. Then (g(v1),---,g(vy)) can be
viewed as an N-dimensional vector in R", where g(v;) defines
a coordinate. Moreover, image data on graphs are represented
by grey levels with the values in range of [0,1]. To make the
image function on graph G better understood, we intuitively
show an example, refer to Fig. 2.
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(c) Topological structure of graph

Fig. 2. The illustration of image functions on graph G.
For the sake of concise exposition, we rewrite g(v;) as g[i].
The Fourier transform of g[i] € g is represented as

N
glil= > gljluiljl. i=1,---,N.
j=I
For p = 0,1,---, P, {ap} denotes a set of masks and 'c?p
denotes the Fourier series of a,. As a, is finitely supported,
a, can be described by a trigonometric polynomial. Let Zi;“, be
the complex conjugate of @,. The g-level tight wavelet frame
decomposition W is defined as

Wg::{Wp,qg:p:())l""’anzlﬂz’.'.’Q}’

where for g =1,
Wh.q8lil =ay 2 M)zlil,
, 0},
Wil =an@ M ag @M )
-ag (27" 2)glil.
Here, p denotes the band of a transform, g denotes the level
of the transform and M denotes the dilation scale, which is
selected such that 2M~1z < Ay <2Mz.
Forp=0,1,---,P,andg=1,2,---,0,let x = Wg =
{24} with x, , =W, 4¢.Forg = 0, 0—1,---, 1, the tight

wavelet frame reconstruction W y is defined by the following
iterative procedure

and for g € {2,3,---

P
Zogilil= > @@ M=)z, [il,
p=0

where y,, = WT y is the reconstructed data from x. Accord-
ing to Theorem 3.1 in [37], we obtain WY W = g, which
means that YWY W is an identity operation.

As mentioned above, a wavelet frame transform involves the
eigenvalue decomposition of the Laplacian matrix of a graph.
In practical applications, it is very challenging to compute
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all eigenvalues of the Laplacian matrix of a large graph.
To overcome this problem, Chebyshev polynomials [53] can be
employed to approximate the masks of a tight wavelet frame
system. For p =0,1,---, P, mask a, is a finitely supported
sequence. A low-degree Chebyshev polynomial can be used
to accurately approximate @, described by a trigonometric
polynomial. In this case, we do not have to calculate all
eigenvalues of the Laplacian matrix. More details can be found
in [37].

According to [54], the piecewise linear B-spline tight frame
system can provide a simple explicit expression to give redun-
dant representations of images, which offers more adaptability
to noise. Thus, we choose this system. Formally speaking, for
¢ € [0, m], the system is formulated as

@) = cos*(¢/2),a1(&) = %2 sin(&), @ (&) = sin(&/2).

III. METHODOLOGY
A. Variational Models for Image Denoising

Let g be a noisy image function defined on a weighted graph
G. Solving image denoising problems defined on graphs,
amounts to recovering an unknown noisy-free image f from
a noisy image g that is formulated as

g=f+eg

where € is random noise perturbation. For mixed or unknown
noise removal, it is generally difficult to exhibit the specific
formulation of noise models. Therefore, the usual solution is
to assume in advance mixed noise models where the most
common types of mixed noise are mixed Gaussian and impulse
noise and mixed Poisson-Gaussian noise. Beyond previous
studies, we focus on the removal of a wide range of mixed or
unknown noise, especially the mixture of Poisson, Gaussian,
and impulse noise. In the sequel, we design the denoising
solutions on the basis of the model of the mixture of Poisson,
Gaussian, and impulse noise, then extend them to generally
mixed or unknown noise removal. Thus, the noisy image g

defined in a domain Q = {1,2,---, N} can be remodeled as
. glil+elli] i e
glil= . .
elil i€ Qy:=Q\Q,

where g obeys Poisson distribution, i.e., g ~ P(f), which
means that f is corrupted by Poisson noise. Moreover, €] is
the additive zero-mean white Gaussian noise, and ¢ is the
impulse noise. The subset Q) of Q denotes the region where
the information of g is missing. It is assumed to be unknown
with each element being drawn from the whole region Q by
Bernoulli trial with a given probability 0 <7 < 1.

To remove noise from g, one of the most popular approaches
is to minimize a variational model consisting of two terms,
i.e., fidelity and regularization:

;neiﬁF(f)ijR(f),

where u is a positive number that aims to balance the fidelity
term F(f) and the regularization term R(f).
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The choice of F(f) is generally determined according to
a specified noise distribution. For instance, we can adopt an
{>-norm fidelity term to remove Gaussian noise, which is
formulated as

F(f)=If -zl

where || - ||, denotes the usual ¢ vector norm, e.g.
Ifle, = V21 + f2[21+ -+ f2[N]. For impulse noise
removal, an £1-norm fidelity term is generally chosen:

F(f) =1 = gllers

where | - |l, denotes the usual ¢; vector norm, e.g.
I flle, = LFOUL+ 11211 + -+ 4+ [ f[N]]. When we remove
Poisson noise in images, the Csiszar’s I-divergence [7] of f
from g can be taken as a fidelity term, i.e.,

F(f) = > (fli] - glillog fLi]).

Since images tend to be corrupted by different types of
mixed or unknown noise rather than single noise, the fidelity
term with respect to given noise may not result in desired
performance for mixed or unknown noise removal. One of the
main tasks of this work is to find a universal fidelity term for
removing mixed or unknown noise in images on graphs.

A regularization term is designed according to a priori
assumption on f. A common assumption is the sparsity of
f in a transform domain such as discrete gradient [55],
Fourier transform, and wavelet [10], [12]. Since the ¢{-norm
regularization term gives preference to a solution f and is
piecewise smooth, we consider penalizing the ¢; norm of
representation coefficients in a transform domain, i.e.,

R()=1Df ey

where D is a linear transform operator.

B. Analysis of Mixed Noise Distribution

For single noise removal, the fidelity terms mentioned above
can lead to a maximum a posteriori (MAP) solution for
specified noise removal. However, they are failure to mixed
noise removal since the mixed noise distribution is far from
any single noise distribution. Here, we consider a case to
illustrate the distributions of multiple mixed noise. We impose
Poisson, Gaussian (standard deviation = 10) and random-
valued impulse noise (probability = 20%) on image ‘Lena’
(see Fig. 6) with size 512 x 512, respectively.

Fig. 3(a) shows the distributions of residuals f[i] — g[i]
for Gaussian, mixed Poisson-Gaussian, mixed Gaussian and
impulse, and the mixture of Poisson, Gaussian and impulse
noise, respectively. To obtain a better view of the heavy
tails, we redraw these distributions in the logarithmic domain,
refer to Fig. 3(b). Clearly, Poisson noise tends to give rise
to a Gaussian-like distribution. Compared with the Gaussian
distribution, we can find that impulse noise leads to a heavy
tail of the mixed noise distribution. Therefore, neither ¢{-norm
nor {>-norm can precisely characterize residuals f[i] — g[i]
in the sense of the MAP estimation.
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Fig. 3. Distributions of Gaussian and mixed noise in different domains.
(a) linear domain; (b) logarithmic domain.
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Fig. 4. Distributions of residuals f[i] — g[i], weighted residuals
w;i(fli] — gli]) and the fitting Gaussian in the logarithmic domain, respec-
tively. (a) and (b) for mixed Poisson-Gaussian noise; (c) and (d) for mixed
Gaussian and impulse noise; (e) and (f) for the mixture of Poisson, Gaussian
and impulse noise.

C. Formulation of the Proposed Model

For weakening the impact of the heavy tail of the mixed
noise distribution, some weighted encoding algorithms have
been proposed [15], [56]. Inspired by such work in [15], [56],
we can assign to each residual f[i] — g[i] a proper weight,
which results in a weighted residual, i.e.,

w; (f1i] = glil),

where w; is a weight assigned to location i. Thus, tar-
get residual f[i] — g[i] is divided into two parts, i.e.,
wi(fli]—gli]) and (1 —w;)(f[i]— g[i]). The former almost
follows a Gaussian distribution. Moreover, the latter is mostly
caused by impulse noise. In order to illustrate the effect
of weighting in presence of different types of mixed noise,
we show an example in Fig. 4.

In Fig. 4, we follow the same noise-related settings as
in Fig. 3. The left column of Fig. 4 shows the distribution
of residuals f[i] — g[i] and the fitting Gaussian function
based on the variance of f[i] — g[i]. The right column of
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Fig. 4 shows the distribution of weighted residuals w; ( f[i] —
gli]) and the fitting Gaussian function based on the variance
of w;(f[i] — gli]) (specific weight settings are discussed in
Section IV-A). Obviously, weighted residuals w; (f[i] — g[i])
tend to follow a Gaussian distribution and the rest residuals
(1 — w;)(f[i] — gli]) are mostly caused by impulse noise,
thus implying that £>-norm can be used to model the weighted
residuals w; (f[i] — g[i]) and £{-norm can be used to model
the rest (1 — w;)(f[i] — g[i]) for a MAP-like solution of f.
For instance, for mixed Gaussian and impulse noise removal,
the residuals are composed of two parts. The first part mostly
follows Gaussian distribution at the locations contaminated
by Gaussian noise. Thus, such residuals are closely weighted
with 1 in the {>-norm fidelity term, and O in the ¢j-norm
fidelity term. The second part can be obtained at the locations
corrupted by impulse noise. Those residuals should be closely
weighted with 0 in the £>-norm fidelity term, and 1 in the
{1-norm fidelity term.

According to the above analysis, we propose a novel fidelity
term, namely weighted ¢ + ¢ fidelity, to remove unknown
noise and a wide range of mixed noise in images on graphs:

F(f) = ZIW(f = )i, + 10 = W)(F = e

where the weight matrix W is defined as the diagonal matrix
with the degrees wy, - - - , wy located on the diagonal. The ele-
ment w; that is assigned to pixel i is automatically determined,
which is inversely proportional to the residual f[i] — g[i].
Thus, we can choose the following expression:

w; = e CULiI=glil? )

where ¢ is a positive parameter used to control the decreasing
rate of w;.

As to the regularization term, we adopt a popular transform
method, i.e., tight wavelet frame transform on graphs [37].
This is because tight wavelet frames can provide redundant
representations of images [37]. The selected regularization
term is expressed as:

R() =1V Fle,

By combining the weighted ¢1 + (> fidelity term and
regularization term with the tight wavelet frame transform,
we present the following model for mixed or unknown noise
removal on graphs:

;neiﬂrégllW(f—g)II?frll(l —W)(f = Dl +ulWFliey, 3)

where ¢ and u are positive parameters, W is a diagonal
weight matrix and )V is the tight wavelet frame transform
on graphs. Note that it is not trivial to extend image denoising
models from a Euclidean domain to a graph domain due
to the nonlinear nature of graphs and the corresponding
algorithms [37], [44].

D. Minimization Algorithm

Formally speaking, the minimization of (3) involves two
unknowns, i.e., W and f. Thus, we can design a two-step
iterative algorithm to solve (3), which fixes W first to solve for
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Algorithm 1 ALM

Input: Noisy image g and tolerance «.
Output: Denoised image f++1.
1: Initialize 4° as a zero vector, ¢° = 1, and W?° as an
identity matrix
2. k<0
3: repeat
(P41, 250) = argmin £s (1, Zi3)
Y = yk 4 ok (C j’Bka _ 7k
ot =gk 41
Update weight matrix W**! using (2)
k—k+1
until [|(y* — y**1) /0"l <e
10: return Denoised image f**!

>

image f, then fixes image f to update W. Note that the main
task in each iteration is to solve the minimization problem
in terms of f while fixing W. In the following, we carefully
derive the procedure of the two-step iterative algorithm.

Assume that W is given. The optimization model (3) cannot
be solved in a straightforward way because it is a least square
problem with two £1-norm terms, i.e., an £1-norm fidelity term
and an {j-norm regularization term. To solve this problem,
we can incorporate two {j-norm terms in a matrix form.
Then, ALM can be employed to solve model (3). The detailed
procedures are next described.

First, we reformulate model (3) in a matrix form as follows:

.9 2 T
ZIW(f — Bf — 4
;nelﬂgzll (f =9z, +07 |Bf —Cl, )

[(1-wWI', ¢ = [(1-W)g0]" and
0 = [égpell. 0 is a vector of zeros. & and é are vectors
of ones. Here, | - | is the absolute value sign, e.g. | f| denotes
the vector with element | f[i]].

Next, we introduce a new variable Z € R™. Model (4) can
be reformulated as

where B =

min[(f,2) = 5 IW(f = o)l +0712
s.t. Bf —C+Z =0. (5)

Since (5) is a constrained optimization problem, it can be
solved by ALM. The augmented Lagrangian function of
model (5) can be defined as

Ls(f, Z5y)
o
=T(£,2)+(y,C = Bf = Z)+ S |IC - Bf = ZII,

2
=r(f,2)+5Hc—Bf—Z+1y
2 o

2
— 5= lylz,

2
05 20

where ¢ is a positive parameter. Thus, the computational
procedure of ALM can be summarized in Algorithm 1. The
convergence of ALM is proved in the Appendix.
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It is obvious that the key to ALM is to obtain the optimal
solution of the following inner subproblem

r}l,lznﬁgk(f,Z,y )

. ¢ 2 T
= ZIW(f - 0' |z
minZ|W(f = )l7, +0" 12|
k
o [ 1 k2
+7||C—Bf—Z+0—ky ||[2_—20_k Iy*lz,.  (6)

First, by fixing f, we solve model (6) in terms of Z. We set
n = o*(C — Bf) + y*. Then model (6) is equivalent to

o 1 m.2
min —0" |Z| + =||1Z — —||7..
in —0"12] + 512 - 717,
This minimization problem has a closed-form solution, i.e.,

1
Z=—Ty(). )
o
Here, for 6; > 0, 7y is a soft-threshold operator as follows:

%(”) = [tel (’71)9 t&z(’h)a e ]9

where fg, (7;) = sign(n;) - max{|n;| — 6;, 0}. By the definition

of @ and #, 79(n) consists of two parts: one is a threshold

on image function values, ie., Tz(cX(1 — W)(g — f) +

y{‘); the other is a threshold on wavelet frame coefficients,

ie., ’];@(ak(—Wf) + ylzc). Here, y* = [y’f y’z‘]T.
Substituting (7) into (6), we have

k
9T o Uk _ 1 = (e
min0"|Z|+—-1IC = Bf = Z+ —)"liz, = FZ%(%),

where Zy(x) is a Huber function defined as

1 2
X x| <y
Ey(x) = 2

| |——1 2 x|
X x| >y,
y 2)’ y

n=(n,n,---)" and 6 = (61,62, --)".
To solve subproblem (6), it is necessary to seek the optimal
f of the following problem

. 1 -
mj}nH(f)zFlzié)i(ﬂi)"‘gﬂw(f—g)”%z- ®)

We apply APGM to solve (8), where the gradient of H is
given as:

VH(f)=—B"(n = Te(n)) + oW W(f — ).

Note that A has full column rank and H(f) is a strictly
convex function. Hence, (8) has a unique solution. APGM is
realized in Algorithm 2.

Here, 7 denotes the step length of APGM. The optimization
algorithm for solving (3) is given in Algorithm 3.

To quantitatively evaluate the denoising ability of the pro-
posed algorithm, we adopt the signal-to-noise ratios (SNR) as
an assessment criterion, i.e.,

ILF = fle,
Iflle,
where f denotes the noisy-free image on graph, and f is the

denoised image on graph, i.e., the result after after a denoising
algorithm.

SNR(f, f) = —201logy,
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Algorithm 2 APGM

Input: Noisy image g, step length 7 and iterations m.
Output: Smoothed image fy,+1.
1: Initialize fo = f1 = ¢, and ¢pp = 1 =1
2: 1+ 1
3: repeat
& fi=fit —(bi;li_l (fi = fie1)
5 fiyr=fi— TVH2(fz')
6 iy = VI ;H%
7. i+ i+1
8: until ¢ =m
9: return Smoothed image fi,+1

Algorithm 3 Weighted Fidelity and Regularization-Based
Method (WFRM)

Input: Noisy image ¢, tolerance ¢, step length 7 and inner
iterations m.
Output: Denoised image f**+1.

1: Initialize y° as a zero vector, 0 = 1, and WY as an
identity matrix

2. k<0

3: repeat

4: Initialize fo = fl = fk, Po=¢1 =1

5. 141

6: repeat

7. fi= fi+ 2572 (fi = fi)

8: Ji1 :fi—Tth(fi)

o e = VI

10: 14 1+1

11:  until i =m

12:  return Smoothed image f, 41

13: fk+1 = fm+1

14 Zk+1 — U%'Tg(Uk(C—Bkarl)—l-yk)
15: yk—l-l — yk 4 O.k(c _ Bfk+1 _ Zk+1)
16: oFtl=oF+1

17:  Update weight matrix W**1 using (2)
18 k< k+1

19: until || (y* — y*+1) /0", < €

20: return Denoised image f*+!

IV. EXPERIMENTAL STUDY

In this section, we devote to numerical simulation for
removing mixed noise in images on graphs. By apply-
ing the proposed algorithm to mixed or unknown noise
removal, we test the efficiency, effectiveness and robustness
of model (3). Specifically, we consider denoising synthetic
images on graphs with the mixture of Poisson, Gaussian,
and impulse noise, which are common noise in the current
literature. Moreover, we also test real images on graphs
corrupted by unknown noise. The challenge for the unknown
noise removal is that the types of noise that contaminate
images are unknown in advance.

To further indicate the effectiveness and practicability of
the proposed algorithm, we implement some comparisons
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between the proposed algorithm and other existing algo-
rithms. In Section I, we mentioned many image denoising
techniques developed in a Euclidean domain, and extended
them to noise removal from images on graphs. Especially,
Dabov et al. [40] propose a novel image denoising strategy
based on an enhanced sparse representation in transform
domain. Gong et al. [14] demonstrate that a variational model
consisting of a universal fidelity term and a wavelet frame-
based ¢i-norm regularization term is able to remove mixed or
unknown noise in images in a Euclidean domain. Li et al. [8]
propose a variational model based on a weighted £>-norm
fidelity and tight wavelet frames for Poisson noise and mixed
Poisson-Gaussian noise removal from images in a Euclidean
domain. Shen et al. [17] present a frame-based iterative
algorithm for the removal of mixed Gaussian and impulse
noise, which takes advantage of directional complex tight
framelets and sparse minimization. Pang and Cheung [43]
construct an optimal metric space by assuming self-similarity
of image patches, which leads to a graph Laplacian regularizer
for fundamental image denoising. Xu et al. [26] develop
an external prior guided internal prior learning method and
apply it to real-world noisy image denoising. More recently,
Ren et al. [29] propose a principled algorithm within the
maximum a posterior framework to tackle image restoration
with a partially known or inaccurate degradation model. For
the sake of concise exposition, these algorithms mentioned
above are shortened as ‘DFKE’, ‘GST’, ‘LSYZ’, ‘SHB’, ‘PC’,
‘XZ7’, and ‘RZZZY’, respectively. We make comparisons
between WFRM and other seven algorithms. The comparisons
are done both visually and quantitatively. All experiments are
implemented in Matlab on a laptop with Intel(R) Xeon(R)
W-2133 CPU of (3.60 GHz) and 32.0 GB RAM.

A. Parameter Setting

Before proceeding with the implementation of WFRM,
we require to set several parameters. In Algorithm 3, we gen-
erally choose step length 7 = 1, tolerance ¢ = 1 x 107,
and inner iteration count m € [20,50]. Parameter ¢ in (2)
controls the decreasing rate of weights with respect to residuals
fli]— gli] and we empirically set it to 0.0008. In addition,
we choose parameter p = 10 in (1).

For model (3), we experimentally choose the parameters
coming from some predefined ranges, ¢ € [0.01,0.1], and
u € [1,2]. Parameter 4 mostly depends on the level of
image damage. The higher the level is, the larger u is chosen.
However, parameter ¢ mainly depends on the level of impulse
noise. The higher the level is, the smaller ¢ is preferred.
It is reasonable for the choice of ¢ since a distinctive outlier
significantly effects the £>-norm fidelity term in (3).

For the wavelet frame transformation on graphs, a, is
experimentally approximated by the Chebyshev polynomial of
degree 7. Here, as an example, we consider the image ‘Lena’
(see Fig. 6) on the unit sphere contaminated by a mixture
of Poisson, Gaussian, and random-valued impulse noise of
different intensities (standard deviations, and probabilities) to
test SNR vis-a-vis changes of tight wavelet frame transform
level g. As shown in Fig. 5, it is concluded that we just

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

33 T T T T T T T T
—+— Poisson+Gaussian(5)+Impulse(15%)
321 —E— Poisson+Gaussian(10)+Impulse(25%) ||
Poisson+Gaussian(15)+Impulse(35%)
31+
a4
Z
1%}
30+ 1
0—o—6—6—6—6—6—6—6—9
29 - 1
I
1 2 3 4 5 6 7 8 9 10
q

Fig. 5. SNR values with changes of ¢g.

need to use the 1-level wavelet frame transformation in all
experiments, since the usage of higher decomposition levels
only slightly enhances the denoising performance while the
computational efficiency is greatly reduced.

B. Results for Synthetic Images on Graphs

We conduct a series of numerical experiments on ten com-
monly synthetic images with size 512 x512: Airplane, Barbara,
Boat, Cameraman, Couple, Hill, Lena, Mandrill, Peppers and
Slope, respectively (the 1st and 3rd columns of Fig. 6). We first
map the ten images onto a unit sphere to generate image data
defined on graphs (the 2nd and 4th columns of Fig. 6). Here,
we select the unit sphere with 40962 sampled vertices as the
graph from which one can visually judge denoising quality
easily.

We rescale noisy-free images with the intensity ranging
from O to 255. A mixture of Poisson, Gaussian, and impulse
noise is considered in this section. Since the outliers conta-
minated by random-valued impulse noise are not distinctive
as those contaminated by salt and pepper impulse noise,
random-valued impulse noise is more difficult to detect. Con-
sequently, we only consider random-valued impulse noise.
We generate Gaussian and random-valued impulse noise of
different intensities (standard deviation s, probability r) in
Matlab. Poisson noise is added by using the Matlab function
‘poissrnd’. For all cases, Poisson noise is added first. Then
we add Gaussian noise. Random-valued impulse noise is the
last to be added. SNR results for the ten test images are
summarized in TABLE L

TABLE 1 shows SNR results of the eight algorithms in
presence of the mixture of Poisson, Gaussian, and impulse
noise with different intensities. We set the levels of impulse
noise to 15%, 25%, and 35%. The levels of Gaussian noise
are 5, 10, and 15. As shown in TABLE I, LSYZ gets the
worst results. The SNR results of SHB, DFKE, PC, GST
and XZZ are similar. WFRM is able to universally achieve
much larger SNR results than other algorithms. Specifically,
RZZ7ZY’s results get close to WFRM’s. While increasing the
levels of Gaussian or impulse noise, the advance of WFRM
over RZZZY is getting larger and larger.
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Fig. 6. The ten test images (Ist and 3rd columns), mapped onto a unit sphere
(2nd and 4th columns).

Subsequently, we show the visual comparison with the
seven mentioned algorithms. We take Figs. 7 and 8 as an
example. Fig. 7 illustrates the denoising results for noisy image
‘Lena’ contaminated by the mixture of Poisson, Gaussian, and
impulse noise. The level of impulse noise is set to 35%. The
level of Gaussian noise is 15. LSYZ can keep clear edges, but
not sufficiently remove impulse noise. On the contrary, other
algorithms except WFRM overly smooth image feature details.
In Fig. 8, we show the denoising results for image ‘Peppers’.
The settings of noise level are same as those in Fig. 7.
Obviously, they can be achieved, which are similar to the
denoising results shown in Fig. 7. WFRM can faithfully retain
texture features while removing mixed noise in images.

Next we show the computational cost of the eight algorithms
while processing image ‘Lena’ with mixed noise of different
levels. As shown in TABLE II, WFRM is the less time-
consuming than other algorithms except DFKE. Especially,
it is not surprising that WFRM runs faster than most denoising
algorithms since an adaptive weight is added in WFRM.
With the increase of noise levels, we can find that all eight
algorithms run for more time due to the increasing amount of
damaged pixels.

For demonstration of multiphase image denoising,
we also consider ten publicly available graphs, i.e., Bunny,
David-head, Elephant, Fandisk, Hand-olivier, Dragon, Bust,
Julius, Leg, and Vase. These graphs are obtained from
“http://3dmdb.com/”. We map the image ‘Slope’ shown
in Fig. 6 onto the graphs to generate image data on graphs,
as shown in Fig. 9. The mapping process is illustrated in
the link: https://www.numerical-tours.com/matlab/meshproc_
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TABLE I

SNR RESULTS OF MIXED NOISE REMOVAL WITH
DIFFERENT SYNTHETIC IMAGES

Image  Noise level LSYZ SHB DFKE PC GST XZZ RZZZY WFRM

s =25,

r — 150 S50-892 31.343 31.815 32.706 32.094 32.751

33.376 33.867
Airplane
26.428 28.725 28.906 29.032 30.486 30.255 31.054 31.838

22.583 27.425 27.127 28.277 28.178 28.506 29.031 29.943

28.269 30.675 30.913 31.046 31.259 32.699 32.779 33.202
Barbara

24.106 27.235 27.632 28.097 27.971 27.891 28.534 29.280

20.391 25.921 26.098 26.223 26.482 26.959 27.130 28.314

24.505 28.678 28.278 29.695 30.641 30.547 31.569 31.915
Boat
21.224 25.787 25.547 25.317 25.811 26.139 26.869 27.450

18.689 22.147 22.958 22.950 22.628 23.149 24.012 25.527

r 26.234 28.132 28.965 30.034 30.235 30.258 30.937 31.115
Cameraman

23.664 26.926 27.158 27.439 27.548 27.841 28.162 28.765

20.278 25.762 25.971 26.382 26.813 27.054 27.394 28.196

26.171 28.008 28.957 29.766 30.591 30.814 31.311 31.767
Couple

23.487 26.152 26.485 26.795 26.883 26.244 28.129 28.845
20.538 25.036 25.000 25.187 25.476 25.929 26.166 27.817

26.258 27.845 28.142 28.490 28.310 28.350 29.102 29.320
Hill
22.503 23.745 24.422 25.446 25.888 26.197 26.263 26.609

18.918 21.242 22.916 23.346 23.556 24.251 24.654 25.157

28.177 29.256 30.792 30.709 31.137 31.616 32.089 32.530
Lena
24.745 27.171 27.959 27.755 28.242 28.473 28.748 29.301

20.782 26.930 26.656 26.276 26.946 26.952 27.451 28.254

27.748 29.511 30.036 29.680 30.880 30.831 31.084 31.689
Mandrill

24.750 27.524 27.849 28.655 27.841 27.585 28.829 29.658
20.937 26.432 25.934 26.163 26.256 26.550 26.913 27.943

28.815 31.278 31.679 31.119 32.957 32.917 33.152 33.792
Peppers
24.758 28.032 28.758 28.498 29.317 29.586 29.826 30.795

21.276 27.960 27.743 27.960 27.506 27.757 28.138 29.149

30.913 32.965 32.392 32.340 32.142 32.754 33.996 34.036
Slope
26.655 29.097 29.655 30.585 30.439 30.380 31.078 31.341

23.163 27.224 27.171 28.224 28.959 28.568 29.843 30.554

TABLE II

COMPUTATIONAL COST (IN SEC.) ON IMAGE ‘LENA’
WITH DIFFERENT LEVELS OF MIXED NOISE

Noise level LSYZ SHB DFKE PC GST XZZ RZZZY WFRM

s=5,r=15% 15 22 7 20 17 21 29 11
s=10,r =25% 16 23 8 23 19 28 38 14
s=15,r=35% 20 26 11 27T 24 40 55 19

5_pde/. As an example, we add the mixture of Poisson,
Gaussian, and impulse noise with the parameters: s = 15 and
r = 35%. The related results on ‘Hand-olivier’ and ‘Leg’ are
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(8) (h) @

Fig. 7. Denoising results of different algorithms on test image ‘Lena’ with
the mixture of Poisson, Gaussian, and impulse noise (s = 15 and r = 35%).
The parameters: ¢ = 0.017, ¢ = 1.73, and m = 30. From (a) to (i): noisy
images on graphs, and results of LSYZ, SHB, DFKE, PC, GST, XZZ, RZZZY,
and WFRM.

(8) (h) @

Fig. 8. Denoising results of different algorithms on test image ‘Peppers’ with
the mixture of Poisson, Gaussian, and impulse noise (s = 15 and r = 35%).
The parameters: ¢ = 0.020, 4 = 1.78, and m = 30. From (a) to (i): noisy
images on graphs, and results of LSYZ, SHB, DFKE, PC, GST, XZZ, RZZZY,
and WFRM.

shown in Figs. 10 and 11. Moreover, we list SNR results in
presence of mixed noise of different levels in TABLE III.

As shown in Figs. 10 and 11, the denoising results of
LSYZ are unsatisfactory due to the residual noise. Moreover,
although other existing algorithms have a smoothing ability,
the changed textures occur in the process of mixed noise

Fig. 9. Image ‘Slope’ is mapped onto different graphs. From (a) to (j): Bunny,
David-head, Elephant, Fandisk, Hand-olivier, Dragon, Bust, Julius, Leg, and
Vase.

@

Fig. 10. Denoising results of different algorithms on ‘Hand-olivier’). The
parameters: ¢ = 0.025, u = 1.65, and m = 40. From (a) to (i): noisy images
on graphs, and results of LSYZ, SHB, DFKE, PC, GST, XZZ, RZZZY, and
WFRM.

removal. Compared with other algorithms, WFRM can simul-
taneously retain many image features while eliminating noise.
The corresponding SNR results are illustrated in TABLE III,
quantificationally showing that WFRM works better than other
algorithms for removing mixed noise of different intensities.

In addition, we compare the computational cost of the
eight algorithms when processing different graphs. Clearly,
as shown in TABLE IV, DFKE consumes the least time given
different graphs. WFRM only spends more time than DFKE.
As the size of a graph increases, the computational cost rises.
In addition, we find that the running time is almost linear with
graph size. It is not difficult to understand why the finding
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Fig. 11. Denoising results of different algorithms on ‘Leg’). The parameters:

o =0.035, © = 1.55, and m = 35. From (a) to (i): noisy images on graphs,
and results of LSYZ, SHB, DFKE, PC, GST, XZZ, RZZZY, and WFRM.

is true since data points generally depend on the topological
complexity of graphs.

C. Results for Real Images on Graphs

It is a common sense that a mixture of different noises
occurs in real images. For noise removal from real images,
it is difficult to achieve the statistical distribution of unknown
noise. Hence, the existing algorithms for mixed noise removal
may be not sufficiently effective since a specific type of noise
distribution is not unknown. However, the proposed algorithm
has potential to exhibit good performance for unknown noise
removal because it is not necessary for our model to pref-
erentially assume noise distributions. Here, we provide the
performance of the proposed algorithm via two groups of
practical examples.

We consider publicly available images on graphs,
i.e., Global Earth observation data. Such data can be inter-
preted as images given on a sphere, which are obtained
from the NASA Earth Observation data set: http://neo.sci.gsfc.
nasa.gov/. Sampled images data contain unknown noise due
to bit errors appearing in satellite measurements. For image
denoising, we use the Red-Green-Blue color space. Thus,
we respectively apply the proposed algorithm in each channel.
To demonstrate multiphase image denoising, we denoise two
groups of images on graphs showing both land surface temper-
ature and water vapor as typically shown in Figs. 12 and 13.
Each group of images contains 4 static scenes, i.e., March,
June, September and December. Each scene is shot 20 times
from 2000 to 2019. The mean image of the 20 shots is
roughly taken as the ‘ground truth’, with which the SNR can
be computed. SNR results for the two groups of images are
summarized in TABLEs V and VI

Fig. 12 shows results for unknown noise removal from
images showing land surface temperatures during the daytime.
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TABLE III
SNR RESULTS OF MIXED NOISE REMOVAL WITH DIFFERENT GRAPHS

Graph  Noise level LSYZ SHB DFKE PC GST XZZ RZZZY WFRM
Tsleg% 30.836 32.767 32.107 32.136 32.117 32.417 33.132 33.917

Bunny —
TS:_2159% 26.463 29.575 28.962 29.869 30.335 30.050 29.942 31.101
Ts::3155% 23.598 27.916 28.005 28.580 28.630 28.903 28.956 30.138
Ts=:15% 30.756 33.169 32.775 32.550 32.591 32.945 33.575 34.561

David-head s =10,

= 25% 27-301 29.700 29.817 30.145 30.895 31.491 31.060 32.022
TS__?};% 24.164 28.262 28.869 28.853 29.801 30.489 30.235 31.090
7"5*:15% 30.722 32.659 32.684 33.622 33.853 33.838 33.953 34.647

Elephant —_
;;2159% 26.963 30.122 30.400 30.351 30.805 30.900 31.821 32.027
:7:3155% 23.867 28.206 28.260 28.513 29.153 29.069 29.315 30.554
Ts_=15% 30.598 32.948 32.800 33.402 33.758 34.111 35.043 35.107

Fandisk _
” ;215%'70 26.688 29.904 29.431 30.076 30.845 30.280 30.769 31.617
:=_315§% 23.547 28.138 28.911 29.240 29.227 30.390 30.649 31.353
TS:=15% 29.398 31.515 31.182 32.123 32.333 32.242 32.732 33.340

Hand-olivier =10,

r — 259 29:056 28.426 28.264 29.184 29.596 29.404 29.648 30.621
TS:_3155% 22.499 26.110 26.146 27.240 27.728 28.096 28.451 29.214
18—:12% 29.815 31.142 31.706 32.490 32.751 32.350 32.976 33.302

Dragon —
TS__2159% 25.906 28.422 28.032 29.046 29.155 29.297 29.654 30.263
S Ty, 22.127 26.916 26.277 27.646 27.506 28.251 28.831 29.654
r57:153% 30.913 32.792 32.046 33.709 33.699 33.616 33.779 34.389

Bust _
:;2150% 26.632 30.959 30.097 30.755 30.891 30.473 31.934 32.548
Ts::3155% 23.098 28.656 28.823 28.276 29.959 29.352 29.130 30.451
Tg__lg% 30.278 32.036 32.695 33.680 33.547 33.831 33.569 34.084

Julius —
TS: 215(% 26.547 30.849 30.317 30.655 30.139 30.585 31.469 32.229
:=_315§% 23.958 28.934 28.950 28.163 29.149 29.550 29.012 30.513
Té;=15% 29.965 31.679 31.034 32.119 32.258 32.917 32.337 33.152

Leg —
:;2159% 25.158 29.758 29.439 29.498 29.841 29.286 30.162 31.026
TS::3155% 22.971 27.743 27.382 27.960 28.254 28.757 28.794 29.538
T‘i:lg% 30.957 32.392 32.766 33.340 33.814 33.754 33.311 34.196

Vase _
TS=_2159% 26.485 30.655 30.795 30.585 30.244 30.380 31.529 32.078
TS:_315§% 23.800 28.171 28.187 28.224 29.929 29.568 29.166 30.043

TABLE IV
COMPUTATIONAL COST (IN SEC.) ON DIFFERENT GRAPHS

Graph Data points LSYZ SHB DFKE PC GST XZZ RZZZY WFRM
Bunny 34817 22 28 10 21 25 41 55 21
David-head 23889 15 19 7 16 17 32 38 15
Elephant 24955 16 20 8 16 18 32 39 15
Fandisk 25894 16 21 8 16 19 33 39 16
Hand-olivier ~ 195946 121 155 57 136 140 231 306 117
Dragon 151471 117 146 50 129 133 228 300 113
Bust 50002 32 39 15 32 36 63 74 30
Julius 36201 23 30 14 22 21 44 58 22
Leg 43386 27 35 10 29 30 61 73 25
Vase 50002 33 41 16 32 37 63 78 31

The colors represent a range of temperatures in March 2018.
In the light of the shapes inside blue rectangles, the denoising
results of LSYZ show that it can retain clear edges but
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Fig. 12. Denoising results of land surface temperature data (March 2018).
The parameters: ¢ = 0.045, ¢ = 1.55, and m = 25. From (a) to (i): noisy
images on graphs, and results of LSYZ, SHB, DFKE, PC, GST, XZZ, RZZZY,
and WFRM.
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Fig. 13. Denoising results of water vapor data (March 2018). The parameters:

¢ = 0.055, © = 1.55, and m = 30. From (a) to (i): noisy images on graphs,
and results of LSYZ, SHB, DFKE, PC, GST, XZZ, RZZZY, and WFRM.

cannot sufficiently remove noise. Differing from this, other
algorithms perform well for noise removal. However, they
also bring over-smoothing to some extent, resulting in several
topology changes (splitting and merging). Superior to other
seven algorithms, WFRM can not only strongly suppress
unknown noise, but also retain clear contours in images.

Fig. 13 illustrates the denoising results with respect to
water vapor. The colors on this collection of images show
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TABLE V

SNR RESULTS FOR UNKNOWN NOISE REMOVAL FROM IMAGES
ON GRAPHS SHOWING LAND SURFACE TEMPERATURES
DURING THE DAYTIME

Month  LSYZ SHB DFKE PC GST XZZ RZZZY WFRM
March  23.706 27.097 27.450 27.766 28.046 28.276 28.819 29.585
June 24.032 27.823 27.734 28.095 28.246 28.380 28.698 29.224
September 24.277 27.695 27.439 28.187 28.709 28.755 29.860 30.251
December 24.046 27.517 27.382 27.990 28.055 28.163 28.840 29.755
TABLE VI

SNR RESULTS FOR UNKNOWN NOISE REMOVAL FROM
IMAGES ON GRAPHS SHOWING WATER VAPOR

Month

March
June
September
December

LSYZ

23.506
24.199
23.891
24.059

SHB DFKE PC

26.547 26.741 27.329
26.939 27.254 27.350
27.449 27314 27.697
27.258 27.244 27.251

GST

27.616
27.473
28.052
27.831

X77

27.585
27.750
28.317
27.986

RZZ7ZY WFRM

28.757 29.076
28.054 28.754
28.980 29.531
28.168 28.779

the amounts of water vapor distributed in the land and ocean
in March 2018. One can focus on the shapes inside red
rectangles. For LSYZ’s results, we find that the noise still
exists in large quantities. Except WFRM, we observe that
other seven algorithms change the topological boundaries
more or less, which forms weak edges. For these practical
examples, it is concluded that the above seven algorithms
cannot simultaneously remove noise and retain image feature
details. WFRM overcomes this drawback successfully and
performs better than them.

TABLE V shows the SNR results for unknown noise
removal from images showing land surface temperatures dur-
ing the daytime. TABLE VI illustrates the SNR results with
respect to water vapor. As shown in the two tables, LSYZ
gets the worst results. The SNR results of SHB, DFKE, PC,
GST and XZZ are close together. WFRM is able to universally
achieve much larger SNR results than other algorithms.

V. CONCLUSION

As an emerging research area, image processing on graphs
has received much attention due to new insights into signal
processing. In this paper, we present a weighted model for
removing mixed or unknown noise in images on graphs.
We design an adaptive weight in the fidelity term to approx-
imate noise distribution. In addition, we adopt a sparse reg-
ularization term that additionally utilizes the wavelet frame
transform on graphs to retain feature details of images defined
on graphs. ALM and APGM are employed to solve this
model. The effectiveness of the algorithm is presented through
numerical experiments. Finally, the following conclusions are

drawn:
1) The proposed fidelity term does not depend on any prior

knowledge of the noise, and thus has some potential
to address mixed or unknown noise removal. The tight
wavelet frame transform has high adaptability to image
data and noise. It can be used to manipulate and ana-
lyze the characteristic of noise. Therefore, the proposed
algorithm can effectively remove noise and retain feature
details in images on graphs.

2) Through a wide range of numerical experiments, the pro-
posed algorithm has better performance than other algo-
rithms in the literature in the process of image denoising.
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3) Numerical simulation results announce that the proposed
algorithm has acceptable computation complexity. More-
over, it can be proved that the proposed algorithm is
generally faster than most of existing algorithms present
in the literature.

There are still some open problems worth pursuing. In future
studies, application areas could be expanded by involving
computer networks, social networks, transportation networks
or ecological systems [57], [58], which can all be visualized
as graphs in which the vertices stand for individual computers,
people, cities or ecological indicators, respectively. Moreover,
more real-world noisy data could be further handled with the
proposed algorithm so as to describe the effects of removing
the measured noise in images on graphs more effectively.
Except what has been mentioned above, we boldly predict
that patch-based image denoising on graphs could become a
new research trend in image processing.

APPENDIX

In the following, we prove the convergence of ALM while
applied to (5) with the assistance of Theorem 4 in [59]. This
theorem has been proved via the well-developed theory on
the proximal point algorithm for maximum monotone opera-
tors [60]. We apply ALM to solve (5), which is essentially
equivalent to applying the proximal point algorithm to solve
the corresponding dual problem:

max Y(y) := 9)
f

inf . Zy),
yeRM eR,ZeRM W(f y)

where i is the ordinary Lagrangian function of (5), i.e.,

w(f, Z:y)=T(f,2) +(y,C - Bf — Z).

Let J(f) = §IW(f — g)l7,- Thus, (9) is rewritten as
maX{<C»y> - J*(BT)’) | |yl| S eiﬂi - 1925 e 5M}9 (10)
yeRM

where J*(-) denotes the convex conjugate function of J.
Obviously, (10) has a bounded feasible set.

Subsequently, we demonstrate that ALM applied to (5) is
the proximal point algorithm applied to (10). Let G, be the
Moreau-Yosida regularization of ¥ in terms of o, i.e.,

Gs (y)

= max
keRM

. 1 2
= m}flx}rg {F(f, Z)+ (k,C—Bf —Z) - EIIK - yllgz]

1
[\P(x) R L y||§2]

. 1 2
_}r’lg[l“(f, Z)—i—m}flx[(K,C— Bf —Z7) — %HK —y||[z”
= inf {F(f, Z) +max{(y,C - Bf = 2)

o
- 2IC—Bf = I}
= }I’lgﬁa(f»z§ y),

where max is interchanged with ifnf according to Theo-
K V4

rem 37.3 in [61]. This is because the objective function of
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the minimax problem has no direction of recession in «.
The optimal solution x* to the resulting inner maximization
problem is easily obtained, i.e., «* = y+0 (C—Bf —Z). Thus,
the augmented Lagrangian function L, (f, Z; y) is available
by substituting in x*.

In order to acquire the convergence of the proposed algo-
rithm by directly applying Theorem 4 in [59], one requires
sup(10) > —oo, which guarantees that operator O associated
with ¥ is maximum monotone, which is defined by

Oy(y)={f eR: fe—-0¥()},yeRY,

Therefore, the solutions to the inclusion problem 0 € Ow(y)
are the optimal solutions to (10).

Theorem 1: Let {9} be a given summable sequence of

positive numbers. Suppose ALM is executed with the stopping
criterion
%)
20k "
Then the generated sequence {y*} c RM is bounded and
yk — y* where y* is some optimal solution to (10). Moreover,
the sequence {(f*,Z*)} is asymptotically minimizing for (5)
with

Lo (fF, 28 38 —inf Loa(f, 23 y*) <

k+1 k
o y ”(’2
k

ly

IC — BfF — ZF Y, = -0, (1)

o
and
@)% + Iy* 17, — 191,
20k '
If there exists an A such that the set of all feasible (f, Z)
in (5) satisfying T'(f, Z) < A is nonempty and bounded, then
{(f*, Z%)Y is also bounded, and any of its cluster points is an
optimal solution to (5).

Proof: Since (5) has only equality constraints, which
guarantees the Slater’s condition, there exists an optimal
solution to (10), and max(10) = inf (5) = asym inf (5). In the
light of Theorem 4 in [59], {y*} is bounded and converges to
y*, which is some optimal solution to (10). Moreover, as given
in (11) and (12), {(f¥, Z%)} asymptotically minimizes (5).

In addition, since yk is bounded, the right-hand side of (12)
is bounded. Consequently, the final statement in Theorem 1
follows from Corollary 8.7.1 in [61], i.e., for a closed proper
convex function, if there exists a nonempty and bounded level
set, then all of its level sets are bounded. U

Remark: For image denoising problems, the corresponding
objective function of (4) is coercive. Thus, the solution set
of (4) is nonempty and bounded, and so is the solution set
of (5). In that case, {(f¥; Z¥)} is bounded, and any of its
cluster points is an optimal solution to (5).

L,z —inf (5) < (12)
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