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Abstract—In this article, we develop a residual-sparse Fuzzy
C-Means (FCM) algorithm for image segmentation, which furthers
FCM’s robustness by realizing the favorable estimation of the
residual (e.g., unknown noise) between an observed image and
its ideal version (noise-free image). To achieve a sound tradeoff
between detail preservation and noise suppression, morphological
reconstruction is used to filter the observed image. By combining
the observed and filtered images, a weighted sum image is gener-
ated. Tight wavelet frame decomposition is used to transform the
weighted sum image into its corresponding feature set. Taking such
feature set as data for clustering, we impose an �0 regularization
term on residual to FCM’s objective function, thus resulting in
residual-sparse FCM, where spatial information is introduced for
improving its robustness and making residual estimation more
reliable. To further enhance segmentation accuracy of the proposed
FCM, we employ morphological reconstruction to smoothen the
labels generated by clustering. Finally, based on the prototypes
and smoothed labels, a segmented image is reconstructed by using
tight wavelet frame reconstruction. Experimental results regarding
synthetic, medical, and real-world images show that the proposed
algorithm is effective and efficient, and outperforms its peers.
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I. INTRODUCTION

S INCE its inception, a Fuzzy C-Means (FCM) algorithm [1]
has achieved much attention, and has been applied to a

wide range of research fields, such as granular computing [2],
pattern recognition [3], and image analysis [4]. However, the
conventional FCM exhibits a substantial flaw as it is not robust to
observed (noisy) images. To improve its robustness, a modified
versions have been put forward by mainly introducing spatial
information into its objective function [5]–[9] and substituting
the Euclidean distance by kernel distance (functions) [10]–[17].
As the first improvement, some classic FCM-related algorithms,
such as FCM_S [5], FCM_S1 [6], FCM_S2 [6], EnFCM [7],
and FGFCM [8], have been proposed. Krinidis and Chatzis [9]
reported a fuzzy local information c-means algorithm (FLICM)
with the assistance of a fuzzy factor, which brought a simplified
parameter setting. It yields better segmentation performance
than previous algorithms. Nevertheless, only nonrobust Eu-
clidean distance is adopted, which is not effective for copying
with the spatial information of images. In order to enhance
its robustness, the second improvement has been investigated
by using kernel distance. The essence of kernel distance is to
transform the original data space into a new one. By making full
use of superior properties of the new space, image data can be an-
alyzed and manipulated easily. As a result, the use of kernel dis-
tance gives rise to well-known FCM-related algorithms, such as
KWFLICM [10], ARKFCM [11], KGFCM [12], NDFCM [13],
and NWFCM [14]. In particular, Wang et al. [15] proposed a
wavelet frame-based FCM algorithm (WFCM) for addressing
image segmentation problems defined in regular Euclidean and
irregular domains. By taking tight wavelet frames as a kernel
function, image data characteristics are fully analyzed.

Recently, some comprehensive FCM algorithms have been
presented [18]–[21], which involve various techniques. For in-
stance, Gharieb et al. [18] introduced an FCM framework by
using Kullback–Leibler divergence to control the membership
distance between a pixel and its neighbors. However, their
algorithm is time-consuming and its segmentation effects can
be further improved. Lei et al. [19] reported a new algorithm,
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namely FRFCM, by augmenting morphological reconstruction
(MR) and membership filtering. It is fast due to its use of gray
level histograms. Yet its performance is sometimes unstable.
More recently, Gu et al. [20] introduced a fuzzy double c-means
algorithm (FDCM) by incorporating sparse representation. It
deals with two datasets simultaneously. The one is the basic fea-
ture set coming from an observed image, and the other is the fea-
ture set learned from a spare self-representation model. Although
FDCM is robust to noise, its computational efficiency is low.

In fact, there usually exist some outliers, noise or intensity
inhomogeneity in an observed image, which are produced by
interferences during image acquisition and transmission. Such
objects are usually modeled as the residual between the observed
image and its ideal value (e.g., noise-free image). Intuitively,
using the ideal value may benefit segmentation effects produced
by FCM. By briefly reviewing the literature, it has been found
that most of the existing FCM-related algorithms utilize spatial
information in observed images to suppress the residual present
in fuzzy clustering. Yet no studies focus on in-depth analysis
and transformation of data components to develop an FCM
algorithm. In other words, the residual is often not introduced
into the objective function of FCM by separating it from the
observed image. Moreover, a large proportion of image data has a
small or zero number of outliers, noise or intensity inhomogene-
ity. Therefore, the residual is very sparse in some transformed
domain. To take the sparsity of the residual into consideration,
Zhang et al. [22] attempted to impose �1 regularization on the
residual, thus resulting in two alternative clustering algorithms,
namely DSFCM and DSFCM_N. Once spatial information has
been encountered, DSFCM upgrades to DSFCM_N, which
makes full use of spatial information. However, both algorithms
fail to fully analyze the sparsity in the residual. As a result, their
segmentation performance remains to be improved.

Motivated by the work presented in [22], we propose an �0
regularization-based FCM algorithm by incorporating an MR
operation [23], [24] and a tight wavelet frame transform [25],
[26]. The framework of the proposed algorithm is given in Fig. 1.
It consists of the following modules:

1) To achieve a good tradeoff between detail preservation
and noise suppression, MR is used to filter an observed
image. By combining the observed and filtered images,
a weighted sum image is generated, which contains less
noise than the observed image but more features than the
filtered image.

2) To acquire sparse representations of the weighted sum
image, a tight wavelet frame system is employed to de-
compose an image, thus resulting in the formation of its
feature set.

3) Considering the feature set as data to be clustered, we
present an improved FCM algorithm by imposing an �0
regularization term on residual between the feature set and
its ideal value, which implies that the ideal value estimated
from the observed value participates in clustering in the
light of the sparsity of the residual. Moreover, due to its
capacity of noise suppression, the spatial information of
image pixels is also considered into the objective function
of FCM since it is naturally encountered in image segmen-
tation. To further enhance the segmentation performance

Fig. 1. Framework of the proposed algorithm.

of the improved algorithm, MR is employed to smoothen
the generated labels in clustering. Finally, by combining
the prototypes obtained by the improved FCM algorithm
and the smoothed labels, a segmented image is recon-
structed by using a tight wavelet frame reconstruction
operation.

In conclusion, this article has the following contributions to
improve FCM’s performance for image segmentation.

1) As a preprocessing step, it uses MR to filter an observed
image. The distribution characteristic of image pixels is
made more favorable to fuzzy clustering. The speed of
clustering is also improved.

2) It employs tight wavelet frames to form a feature space,
which overcomes the drawback of the direct use of image
pixels. In this space, underlying image details can be
fully analyzed and manipulated. In essence, this study
proposes a novel kernel-based FCM algorithm by taking
tight wavelet frames as a kernel function.

3) It proposes residual-sparse FCM by introducing an �0
regularization term on residual into FCM. The proposed
FCM makes the residual accurately estimated by using
its sparsity. To guarantee the close relationship between a
target pixel and its neighbors, spatial information is also
considered into the proposed FCM.

4) We complete a label smoothing step by prudently us-
ing MR. Consequently, FCM’s performance is further
improved.

Overall, the originality of this article is to propose a compre-
hensive FCM algorithm by precisely estimating the residual and
assistance of various techniques. The essence of the proposed
algorithm is a kernel-based FCM method with the aid of tight
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wavelet frames, which has better ability to identify features and
noise in images. As a preprocessing step, MR removes a large
portion of noise and preserves main features, thus making a
weighted sum image more favorable to clustering. Moreover,
since �0 regularization exhibits good properties related to the
sparsity of the residual, the estimation of the residual is precisely
realized. That is to say, the proposed algorithm conducts image
segmentation by indirectly using the ideal value of an observed
image. It is clear that �0 regularization exhibits the greatest
impact on FCM’s robustness improvement. However, it requires
more iterations. MR and wavelet frames further improve seg-
mentation performance to some extent. Additionally, they make
the number of FCM’s iterations greatly decreased. Although
they are not as influential as the �0 regularization, they are indis-
pensable for improving the FCM’s segmentation performance.

The rest of this article is organized as follows. In Section II, the
FCM algorithm and a tight wavelet frame transform are briefly
recalled. Section III details the proposed algorithm. Section IV
reports experimental results for a set of images. Finally, Sec-
tion V concludes this article.

II. PRELIMINARIES

A. FCM Algorithm

Given is a data setX = {xj : j = 1, 2, . . . ,K} ⊂ RK .Since
each objectxj hasL attributes (channels), it is anL-dimensional
vector (xj1, xjl, . . . , xjL)

T . FCM splits X into c subsets by
minimizing the following objective function:

J(U ,V ) =
c∑

i=1

K∑
j=1

um
ij‖xj − vi‖2 (1)

subject to
c∑

i=1

uij = 1 ∀j ∈ {1, 2, . . . ,K}

where U = [uij ]c×K with 0 ≤ uij ≤ 1 is a partition matrix,
V = {vi}i=1,2,...,c is a set of c prototypes, ‖ · ‖ denotes the
Euclidean distance, and m is a fuzzification exponent (m > 1).

The FCM algorithm is an alternating iteration scheme aimed
to minimize (1). Each iteration can be realized as follows [27]:

u
(t+1)
ij =

(‖xj − v
(t)
i ‖2)−

1
m−1∑c

q=1(‖xj − v
(t)
q ‖2)− 1

m−1
, v

(t+1)
il

=

∑K
j=1

(
u
(t+1)
ij

)m
xjl∑K

j=1

(
u
(t+1)
ij

)m .

Here, t is an index of the tth iteration. By presetting a positive
threshold ε, the iterative process is terminated when ‖U (t+1) −
U (t)‖ < ε.

B. Tight Wavelet Frame Transform

Since tight wavelet frames can provide redundant repre-
sentations of image data and exhibit substantial ability for
feature/texture extraction, they have been successfully applied

to various research areas, such as image segmentation [15],
[28], image denoising [29]–[31], image restoration [25], [32],
and mesh surface reconstruction [33], [34]. For simplicity, we
present the main idea of a tight wavelet frame transform con-
cisely. Its more details can be found in [25] and [26]. Generally
speaking, it consists of two operators, i.e., decompositionW and
reconstructionWT . By presetting a set of filters (masks), some
finite subfiltering operators are generated, i.e.,W0,W1,W2 . . .,
which make up decomposition W . More specifically, W0 is a
low-pass filtering operator andW1,W2 . . . are high-pass filter-
ing operators. By unitary extension principle [35], reconstruc-
tionWT is available. Therefore, we haveWTW = I, where I
is an identity matrix [26].

III. PROPOSED METHODOLOGY

A. Image Filtering via MR

To reduce the impact of noise/outliers on FCM as much as
possible, a preprocessing step is performed by applying a filter-
ing operation. It also takes full advantage of spatial information
in image pixels, thus optimizing image pixel distribution for
making it more favorable to clustering. That is to say, the prepro-
cessing step makes the number of iterations of FCM decreased.
Being superior to many sophisticated filtering operations, such
as curvature filtering [36] and bitonic filtering [37], an MR oper-
ation exhibits the sound noise immunity and retention capacity
of image details. In light of MR’s superiority, we employ it
to filter an observed image in advance. Formally speaking, the
residual η between an observed image g and its ideal value g̃ is
expressed as

η = g − g̃.

To reduce η from g, we use MR. It consists of two basic
operators, i.e., dilation and erosion reconstructions [21], [38].
Formally speaking, given a mask image g and a mark image f ,
we denote the dilation reconstruction as

RDg (f) = D(t)
g (f)

where D(t)
g (f) is expressed as

D(t)
g (f) =

{D(f) ∧̈ g, t = 1
D(D(t−1)(f)) ∧̈ g, t = 2, 3, . . .

where f ≤ g, ∧̈ represents a pointwise minimum operation, and
D is the dilation of f with a flat structuring element of size ω.
The erosion reconstruction is denoted as

REg(f) = E(t)g (f)

where E(t)g (f) is formulated as

E(t)g (f) =

{E(f) ∨̈ g, t = 1
E(E(t−1)(f)) ∨̈ g, t = 2, 3, . . .

where f ≥ g, ∨̈ stands for a pointwise maximum operation, and
E is the erosion of f with a flat structuring element of size ω.

Based onRDg andREg , the morphological closing reconstruc-
tion of g can be modeled as

RC(g) = RERDg (E(g))(D(R
D
g (E(g)))) (2)
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Fig. 2. Comparison of different filtering methods. (a) Original image. (b)
Observed image. (c) Filtered result using a curvature filter. (d) Filtered result
using a bitonic filter. (e) Filtered result using MR.

In the sequel, we denote the filtered image as ḡ = RC(g). To
exhibit MR’s performance, we refer to Fig. 2 as an example.
Here, a square of ω = 3× 3 is taken as the structuring element.

In Fig. 2, the second row stands for the corresponding gray
level histograms of five images presented in the first row. Ob-
viously, the original image includes four gray levels, i.e., 0, 85,
170, and 255, whereas its gray level histogram has four visible
peaks. The observed image is corrupted by mixed Gaussian and
impulse noise (standard deviation = 10 and density = 10%). Its
histogram has only two apparent peaks, i.e., 0 and 255. As
Fig. 2(c)–(e) indicate, MR clusters image pixels into four groups
while both curvature and bitonic filters producing some inhomo-
geneous peaks and cannot fully remove noise. In summary, MR
is superior to usual filters since it can effectively remove noise
and retain image details.

In this work, by combining g and ḡ, we define a weighted sum
image ĝ as

ĝ =
g + αḡ

1 + α
(3)

where α is a parameter assuming positive values and controlling
the impact of the filtered image ḡ. Generally speaking, ĝ contains
less noise than g and more features than ḡ. In addition, to express
the composition of ĝ explicitly, we rewrite ĝ as

ĝ = η′ + g′ (4)

where g′ stands for the ideal value of ĝ and η′ is the residual
between ĝ and g′.

B. Feature Extraction via Wavelet Frames

Due to the sound feature extraction capacity of tight wavelet
frames, we employ them to transform original data space into
a new feature (kernel) space. Built on this new space, image
features and noise can be sufficiently analyzed and manipulated.
To be specific, after weighted sum image ĝ has been obtained,
we generate its feature set by using a tight wavelet frame system.
By employing a set of filters (masks), we construct M + 1
subfiltering operatorsW0,W1, . . . , and WM . They make up a
tight wavelet frame decomposition operator W. More specif-
ically, W0 is a low-pass filtering operator, and the remaining
are high-pass filtering ones. As a result, we useW to form the

Fig. 3. Illustration for redundancy and feature extraction. (a) Original image.
(b)–(j) Wavelet coefficients.

feature set associated with the weighted sum image, i.e.,

X =W ĝ = {W0ĝ,W1ĝ, . . . ,WM ĝ}. (5)

For image processing,W0ĝ is a wavelet coefficient that repre-
sents low-frequency information, whereas the rest represents
high-frequency ones. Note that the selection of filters is de-
scribed in Section IV-C. To better understand the redundancy
and feature extraction capacity of wavelet frames, we show
an example (see Fig. 3) in the presence of a piecewise linear
B-spline tight frame system (described in Section IV-C). The
level of tight wavelet frames is set to 1.

From Fig. 3, we see that the tight wavelet frame decomposition
gives redundant representations of an original image, thus form-
ing its feature set. Fig. 3(a) shows low-frequency information.
High-frequency information is presented in Fig. 3(b)–(j). In
this case, each image pixel contains nine underlying attributes
(channels). Formally speaking, for an image with K pixels,
the size of its feature set X is 9×K. As a result, for image
segmentation, the data dimensionality to be used in clustering is
expanded in comparison with the direct use of image pixels.

C. �0 Regularization-Based FCM

To achieve better segmentation effects, it is necessary to take
the ideal value of an observed image as data for clustering, which
means that the residual between them can be considered into
clustering. As a result, we can augment FCM by introducing
a sparse regularization term on the residual into its objective
function. Before presenting the proposed algorithm, we, respec-
tively, reformulate feature sets associated with ĝ, g′, and η′ in
(4) as

X =W ĝ = {x1,x2, . . . ,xK}
X̃ =Wg′ = {x̃1, x̃2, . . . , x̃K}
R =Wη′ = {r1, r2, . . . , rK}.

Here, we have

X̃ = X −R. (6)

In addition, R can also be rewritten as {Rl : l = 1, 2, . . . , L},
which means that each component Rl contains L channels.
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Then, we introduce an �p regularization term on R into the ob-
jective function of FCM. In the sequel, the augmented objective
function is expressed as

J(U ,V ,R) =
c∑

i=1

K∑
j=1

um
ij‖xj − rj − vi‖2 +

L∑
l=1

βl‖Rl‖p�p
(7)

where p ≥ 0, β = {βl : l = 1, 2, . . . , L} is a parameter vector
that controls the impact of �p regularization on FCM, and

‖Rl‖p�p =

{∑K
j=1 |rjl|p, p > 0∑K
j=1 |rjl|0, p = 0

(8)

with

|rjl|0 =

{
1, rjl �= 0
0, rjl = 0

. (9)

In (8), ‖ · ‖�p is an �p vector norm. Especially, ‖ · ‖�0 denotes the
�0 vector norm, and ‖Rl‖�0 represents the number of nonzero
entries in Rl. When p ∈ [0, 1), the minimization of (7) is a
nonconvex problem. As to p ∈ {4/3, 3/2, 2}, the closed-form
solution to the minimization of (7) is derived in [39] and [40].
In particular, for p = 1, the closed-form solution is given in [22]
by using a general soft-thresholding operator.

Generally speaking, a large proportion of image data has a
small or zero number of outliers, noise or intensity inhomogene-
ity. Therefore, R tends to be very sparse. To take the sparsity of
R into consideration, in this work, we focus on the case p = 0.
The main difference between this study and the above cases is in
the form of the norms used forR. Even though the use of �0 norm
gives rise to the difficulty for designing effective algorithms to
solve the underlying optimization problems, it is beneficial to
cope with a variety of cases [41]. Therefore, (7) is fixed as the
following expression:

J(U ,V ,R)=

c∑
i=1

K∑
j=1

um
ij‖xj − rj − vi‖2+

L∑
l=1

βl

K∑
j=1

|rjl|0.

(10)
In addition, the use of spatial information is beneficial to im-

prove FCM’s robustness. If the distance between an image pixel
and its neighbors is small, there exists a large possibility that
they belong to the same cluster. To further improve segmentation
performance, we introduce spatial information into the objective
function of FCM. Prior to performing the modified objective
function, we need to complete an analysis of spatial information.
To make spatial information easily understood, refer to Fig. 4.

In a concise way, a pixel or feature is sometimes loosely rep-
resented by its corresponding index while this is not ambiguous.
In Fig. 4, we show an arbitrary pixel j and its spatial information
with a local window. Nj stands for a local window centralized
in j including j. We let |Nj | be the cardinality of Nj , which
represents the size of a local window Nj . In Fig. 4, we have
|Nj | = 3× 3, which represents thatNj contains pixel j and its
eight neighbors.

According to (10), uij depends on the distance ‖xj − rj −
vi‖. Thus, it is optimized by considering spatial information of
xj and rj . Motivated by the work presented in [9], we express

Fig. 4. Illustration of spatial information of pixel j.

the spatial information of xj and rj as

∑
n∈Nj

‖xn − rn − vi‖2
1 + dnj

,
∑
n∈Nj

|rnl|0
1 + dnj

(11)

where n is a neighbor pixel of j, dnj represents the Euclidean
distance between n and j, and the factor 1/(dnj + 1) reflects
the spatial structure information. As a result, by substituting
(11) into (10), the modified objective function can be defined as

J(U ,V ,R) =
c∑

i=1

K∑
j=1

um
ij

⎛⎝∑
n∈Nj

‖xn − rn − vi‖2
1 + dnj

⎞⎠
+

L∑
l=1

βl

K∑
j=1

∑
n∈Nj

|rnl|0
1 + dnj

(12)

subject to

c∑
i=1

uij = 1 ∀j ∈ {1, 2, . . . ,K}.

In the sequel, the Lagrangian multiplier method is applied to
minimize (12). The augmented Lagrangian function is

LΛ(U ,V ,R) =
c∑

i=1

K∑
j=1

um
ij

⎛⎝∑
n∈N j

‖xn − rn − vi‖2
1 + dnj

⎞⎠
+

L∑
l=1

βl

K∑
j=1

∑
n∈Nj

|rnl|0
1 + dnj

+
K∑
j=1

λj

(
c∑

i=1

uij − 1

)
(13)

where Λ = {λj : j = 1, 2, . . . ,K} stands for a set of La-
grangian multipliers. The solution to the minimization of (12)
can be produced in an iterative manner by handling the following
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three subproblems:⎧⎪⎪⎨⎪⎪⎩
U (t+1) = argmin

U
LΛ(U ,V (t),R(t))

V (t+1) = argmin
V
LΛ(U

(t+1),V ,R(t))

R(t+1) = argmin
R
LΛ(U

(t+1),V (t+1),R)

. (14)

Each of the subproblems of (14) has a closed-form solution.
We adopt an alternative optimization scheme similar to that used
in the FCM algorithm to conduct the optimization of the partition
matrix U and prototypes V . The iterative updates of U and V
are easily given as

u
(t+1)
ij =

(∑
n∈Nj

‖xn−r(t)
n −v(t)

i ‖2
1+dnj

)− 1
m−1

∑c
q=1

(∑
n∈Nj

‖xn−r(t)
n −v(t)

q ‖2
1+dnj

)− 1
m−1

(15)

v
(t+1)
i =

∑K
j=1

((
u
(t+1)
ij

)m∑
n∈Nj

xn−r(t)
n

1+dnj

)
∑K

j=1

((
u
(t+1)
ij

)m∑
n∈Nj

1
1+dnj

) . (16)

When optimizing R, it is obvious that both rj and rn are in
(12). Since rj is not independent from rn, rn cannot be treated
as a constant vector. If n is one of neighbors of j, j is also
one of neighbors of n symmetrically. In the sequel, n ∈ Nj is
equivalent to j ∈ Nn. Then, we have

K∑
j=1

um
ij

⎛⎜⎜⎜⎜⎜⎝f(rj) +
∑

n ∈ Nj

n �= j

f(rn)

⎞⎟⎟⎟⎟⎟⎠ =
K∑
j=1

∑
n∈Nj

um
in (f(rj))

(17)
where f stands for a function in terms of rj or rn. According
to (17), (12) is rewritten as

J(U ,V ,R) =
c∑

i=1

K∑
j=1

∑
n∈Nj

um
in ‖xj − rj − vi‖2

1 + dnj

+
L∑

l=1

βl

K∑
j=1

∑
n∈Nj

|rjl|0
1 + dnj

. (18)

Based on (18), once U and V have been updated, the third
subproblem of (14) is separable and the optimization of R can
be decomposed into K × L subproblems as follows:

r
(t+1)
jl = argmin

rjl

c∑
i=1

⎛⎝∑
n∈Nj

(
u
(t+1)
in

)m
‖xjl − rjl − v

(t+1)
il ‖2

1 + dnj

⎞⎠
+
∑
n∈Nj

βl|rjl|0
1 + dnj

.

(19)
The following result is needed to obtain the iterative update of
residual rjl.

Theorem III.1: Consider the minimization problem (19). By
applying a well-known hard-thresholding operator to solve (19),

the iterative formula of residuals is obtained as follows:

r
(t+1)
jl = H ∑

n∈Nj

βl
1+dnj

⎛⎜⎝∑c
i=1

∑
n∈Nj

(
u
(t+1)
in

)m(
xjl−v(t+1)

il

)

1+dnj∑c
i=1

∑
n∈Nj

(
u
(t+1)
in

)m

1+dnj

⎞⎟⎠
(20)

whereH is a hard-thresholding operator defined as [42]

Hσ(ξ) =

{
ξ, ξ ≥ √σ
0, ξ <

√
σ

. (21)

Proof: See appendix. �

D. Label Smoothing via MR

To further enhance the segmentation effects of the �0
regularization-based FCM algorithm, we use MR to smoothen
the obtained labels of pixels. It is taken as a postprocessing step
to reduce the possibility of misclassification. We define the label
of the jth pixel as φj = label(uij)

uij = argmax {u1j , u2j , . . . , ucj}
where label denotes the location of maximum uij , i.e., φj = i.
This means that the jth pixel belongs to the ith cluster. Thus, we
can define the label set of K pixels as

Φ = {φj : j = 1, 2, . . . ,K}. (22)

In the sequel,Φ is arranged into a matrix of the same size as ĝ,
thus generating a label image Φim. We employ MR to smoothen
the obtained label image Φim so as to generate a smoothed label
image that is formulated as

Φim = RC(Φim). (23)

Based on the smoothed label image Φim and the obtained
prototypesV , the segmented feature set X̂ is obtained. Then, we
use the wavelet frame reconstruction operatorWT to reconstruct
a segmented image g′′

g′′ =WT (X̂). (24)

By combining four components mentioned above, i.e., image
filtering, feature extraction, �0 regularization, and label smooth-
ing, the proposed algorithm for image segmentation is realized
in Algorithm 1.

IV. EXPERIMENTAL STUDIES

In this section, we proceed with numerical experiments to
investigate the effectiveness and efficiency of the proposed
algorithm (namely LRFCM). Numerical results reported for
synthetic, medical, and real-world images are provided. We
compare LRFCM with the four classic algorithms studied in
the literature, i.e., FCM_S1 [6], FCM_S2 [6], FGFCM [8],
and FLICM [9], and six recently proposed algorithms including
KWFLICM [10], ARKFCM [11], FRFCM [19], WFCM [15],
SRFCM [21], and DSFCM_N [22]. We also conduct ablation
studies and analyze the impact of each component in LRFCM.
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Algorithm 1: �0 Regularization-Based FCM Algorithm In-
corporating MR and Wavelet Frames (LRFCM).

Input: Observed image g, control parameter α,
fuzzification coefficient m, number of clusters c, and
threshold ε.

Output: Segmented image g′′.
1: Calculate the filtered image ḡ via (2)
2: Calculate the weighted sum image ĝ via (3)
3: Generate the feature set X via (5)
4: Initialize randomly the prototypes V (0)

5: t← 0
6: repeat
7: Calculate the partition matrix U (t+1) via (15)
8: Update the prototypes V (t+1) via (16)
9: Update the residuals R(t+1) via (20)

10: t← t+ 1
11: until ‖U (t+1) −U (t)‖ < ε
12: return partition matrix U , prototypes V , and

residuals R
13: Generate the labels of image pixels via (22)
14: Smoothen the labels via (23)
15: Calculate the segmented image g′′ via (24)

A. Evaluation Indicator

To quantitatively evaluate comparison results of all algo-
rithms, we adopt five performance indicators as follows.

1) Segmentation accuracy (SA) [10]. It is used to assess the
performance of segmenting images with known ground
truth. The larger the SA, the better the segmentation effect.

2) Dice coefficient (DC) [43]. It is used to measure the
similarity between a segmented image and its ground truth.
The higher the DC, the better the segmentation result.

3) Entropy-based information (EI) [44]. It is used to evaluate
the performance for segmenting images without ground
truth. Its essence is to minimize the uniformity across all
clusters by maximizing the uniformity of pixels within
each segmented cluster. Hence, a better segmentation ef-
fect is associated with a smaller EI value.

4) Partition coefficient (PC) [45]. It is a validity index to mea-
sure the partitions of a clustering algorithm. The higher the
PC is, the better the clustering result will be.

5) Partition entropy (PE) [46]. Its use is similar to PC’s.
However, a better segmentation effect associates with a
smaller PE value.

B. Dataset Description

Except synthetic images, we test four publicly available
databases to exhibit the performance of all algorithms. They
are outlined as follows.

1) BrianWeb.1This is an online interface to a 3-D MRI sim-
ulated brain database. The parameter settings are fixed to
three modalities, five slice thicknesses, six levels of noise,

1[Online]. Available: http://www.bic.mni.mcgill.ca/brainweb/

and three levels of intensity nonuniformity. BrianWeb
offers golden standard segmentation.

2) Berkeley Segmentation Data Set (BSDS).2 It contains 500
images, i.e., 200 training, 100 validation, and 200 testing
images. It gives golden standard segmentation.

3) Microsoft Research Cambridge Object Recognition Image
Database (MSRC).3 It has 591 images and 23 object
classes with golden standard segmentation.

4) NASA Earth Observation Database (NEO).4 It continually
provides information collected by NASA satellites about
earth’s ocean, atmosphere, and land surfaces. There exist
different levels of unknown noise in sampled images of
size 1440× 720, which result from bit errors appearing
in satellite measurements. Therefore, their ground truth is
unknown.

C. Parameter Setting

Prior to accomplishing all numerical experiments, we report
parameter settings of all algorithms. For FLICM, KWFLICM,
ARKFCM, and DSFCM_N, the size of a local window central-
ized in pixel j is set to |Nj | = 3× 3. For other peers, the size ω
of a filtering window is fairly set to 3× 3 since image filtering is
considered in such comparative algorithms. We set fuzzification
exponent m = 2 and threshold ε = 1× 10−6 across all algo-
rithms. Moreover, the suitable number of clusters c is assumed to
be known, and how to decide c is introduced in each experiment.

Except for usual parametersm, ε, and c, there are no more pa-
rameters in FLICM, KWFLICM, and ARKFCM. Nevertheless,
there exist different parameters in the remaining algorithms. We
have to clarify that such parameters are optimal in the experi-
ment. For FCM_S1 and FCM_S2, α is uniformly set to 4, which
aims to constrain the neighbor term. In FGFCM, the spatial scale
factor λs and gray-level scale factor λg are, respectively, set to
3 and 5. For FRFCM, according to [19], we select the observed
image as the mask image, and generate the marker image with
the aid of a square structuring element of size 3× 3. Moreover, a
median filter of size 3× 3 is applied to the membership filtering.
As to WFCM, we experimentally select μ ∈ [0.55, 0.65], which
is used to control the effect of spatial information. The level of
tight wavelet frame transform is chosen as 1. In SRFCM, MR
is applied to image pixel filtering and label smoothing based on
the same setting as that in FRFCM. The one-level wavelet frame
transform is used. β is chosen from an interval [0,0.06], which
controls the impact of a sparse regularization term on FCM. For
DSFCM_N, the parameter vector λ is selected according to the
standard deviation of each channel of image data.

Except a usual threshold ε, there are four common parameters,
i.e., m, ω, α, and |Nj |, that are involved in LRFCM, where m
is a fuzzification exponent, ω is a filtering window of MR, α
is a positive parameter for controlling the impact of the filtered
image, and |Nj | denotes the size of a local window centralized in

2[Online]. Available: https://www2.eecs.berkeley.edu/Research/Projects/
CS/vision/grouping/resources.html

3[Online]. Available: http://research.microsoft.com/vision/cambridge/
recognition/

4[Online]. Available: http://neo.sci.gsfc.nasa.gov/
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TABLE I
SELECTION OF COMMON PARAMETERS IN LRFCM

pixel j. To better elaborate their selection, we cover an example
in Table I, where the second image in Fig. 6 is segmented after
40% impulse noise has been added. As Table I shows, LRFCM’s
performance depends on these parameters significantly. When
m = 2 and α = 4, both SA and iterations reach the best. When
ω and |Nj | are both 3× 3, in spite of more iterations, LRFCM’s
performance is the best. Therefore, in this work, we set m = 2,
ω = 3× 3, α = 4, and |Nj | = 3× 3.

As to a tight wavelet frame transform, we choose a piece-
wise linear B-spline tight frame system since it is commonly
used for feature extraction and redundant representations of
images[35], [47]. In this system, three 1-D filters are dis-
cretized as h0 = [1/4, 1/2, 1/4], h1 = [−1/4, 1/2,−1/4], and
h2 = [

√
2/4, 0,−√2/4]. By employing such filters, we generate

nine 2-D filters so as to construct nine corresponding subfiltering
operators W0,W1, . . . ,W8. Thus, M in (5) is equal to 8. For
j = 1, 2, . . . ,K, each pixel xj has nine channels, i.e., L = 9.
In addition, the level of tight wavelet frame transform is set
to 1 since higher levels bring expensive calculations while
segmentation performance is only slightly improved [15].

Except the above-mentioned parameters, there only exists one
parameter β in LRFCM. Since the main difference between
LRFCM and DSFCM_N is the norms used for residual R,
the parameter setting for the sparse regularization term in DS-
FCM_N could be referenced. β is associated with the standard
deviation of each channel of image data since the standard devi-
ation can reflect the noise level to some extent [22]. Therefore,
β = {βl : l = 1, 2, . . . , L} is expressed as

βl = ζ · δl,

where ζ is a positive parameter and δl is the standard deviation
of the lth channel of image data. After massive experiments, ζ
is recommended to be 70. Here, we report an example about the
selection process of ζ, as shown in Fig. 5. Here, we segment the
second image shown in Fig. 6, which is contaminated by 40%
impulse noise.

As Fig. 5 reveals, as ζ increases, the SA value first increases
and then decreases sharply. When ζ = 70, the SA reaches its
maximum value. Moreover, the iteration count of LRFCM is
minimized. Therefore, we choose ζ = 70.

Fig. 5. Segmentation results with changes of ζ. (a) SA and (b) iterations versus
ζ.

Fig. 6. Three synthetic images.

TABLE II
INVESTIGATION OF EACH COMPONENT IN LRFCM

D. Ablation Studies and Analysis

We provide ablation experiments to show the effects of
four key components involved in LRFCM, i.e., image filtering,
feature extraction, �0 regularization, and label smoothing. We
conduct ablation experiments on BSDS. BSDS collects 500
images and pays students to hand segment each one (usually
each image has multiple hand segmentations). In this study,
we choose a typical hand segmentation by following [48]. The
numbers of clusters for 500 images are summarized in the Excel
form titled as “BSDS500_Performance.”5 All experiments are
implemented on the same experimental platform. The average
results are presented in Table II. The symbol× indicates that its
corresponding component is absent while symbol

√
states that

the component is activated.
As shown in Table II, ten combinations of the four key

components are tested. When all components are not present,
the SA value is only 72.82%. If we consider each component
alone, the average SA values are increased by 9.91%, 5.56%,
20.68%, and 0.72%. Hence, �0 regularization exhibits the great-
est impact on the improvement of FCM. Nevertheless, it also

5[Online]. Available: https://github.com/jiaxhsust
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Fig. 7. Segmentation results on the first synthetic image corrupted by different
levels of Rician noise.

Fig. 8. Segmentation results on the second synthetic image contaminated by
different levels of Gaussian noise.

results in more iterations. The label smoothing slightly improves
SA values. It does not give rise to more iterations since it is used
as a postprocessing step in LRFCM. Moreover, MR and tight
wavelet frames can not only further segmentation performance,
but also make iterations of LRFCM greatly decreased due to
their characteristics for data optimization.

E. Results for Synthetic Images

In the first experiments, we test three synthetic images shown
in Fig. 6. The first two images have ground truth, which contain
four gray levels, i.e., 0, 85, 170, and 255. The last image is
without ground truth. We impose different levels of Rician noise
(with probability RN ), Gaussian noise (with standard deviation
GN ), and impulse noise (with probability IN ) on them. Note
that salt and pepper impulse noise is only considered since it is
one of the most common types of impulse noise. The numbers
of clusters are set to 4, 4, and 2. The segmentation results of
all algorithms are summarized in Figs. 7–9. To intuitively show
the visual comparison of all algorithms, we cover three cases in
Fig. 10.

As illustrated in Figs. 7–9, LRFCM generally performs better
than its peers. From Fig. 10, we find that FCM_S1, FCM_S2,
FGFCM, FLICM, and ARKFCM have poor performance in
suppressing high levels of Gaussian noise and Rician noise.
Although KWFLICM, FRFCM, and DSFCM_N can remove
a large proportion of such noise, there is a small amount of
noise in their segmentation results. On contrary, WFCM and
SRFCM have a good capacity of noise suppression. However,

Fig. 9. Segmentation results on the third synthetic image corrupted by different
levels of impulse noise.

Fig. 10. Segmentation results for three synthetic images. The noise levels:
RN = 40%, GN = 40, and IN = 40%. The odd-numbered columns: seg-
mented images; and even-numbered columns: residual images. From top to
bottom: noisy image and results of FCM_S1, FCM_S2, FGFCM, FLICM,
KWFLICM, ARKFCM, FRFCM, WFCM, SRFCM, DSFCM_N, and LRFCM.
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TABLE III
SEGMENTATION PERFORMANCE ON MEDICAL IMAGES IN BRIANWEB

Fig. 11. Five medical images.

they produce several topology changes such as merging and
splitting. Superior to its ten peers, LRFCM is robust to such noise
and retains more image features. As to impulse noise removal,
except WFCM, SRFCM, and DSFCM_N, other comparative
algorithms cannot perform well. In particular, the segmentation
results of FCM_S1, FCM_S2, FGFCM, FLICM, and ARKFCM
are far from being satisfactory. When focusing on the results of
WFCM, SRFCM, and DSFCM_N, we find that there are some
unsmooth edges. Nevertheless, DSFCM_N performs better than
WFCM since it is modeled based on an analysis of noise spar-
sity. Compared with DSFCM_N, LRFCM yields slightly better
results since it achieves smoother edges.

F. Results for Medical Images

In the second experiments, we segment five medical images
coming from BrianWeb, as shown in Fig. 11. They are generated
by T1 modality with slice thickness of 1-mm resolution, 9%
noise, and 20% intensity nonuniformity. Here, they are repre-
sented as five slices in the axial plane with the sequence of 70,
80, 90, 100, and 110. We set the numbers of clusters to 4. The
segmentation results are illustrated in Table III and Fig. 12.

From Table III, we see that LRFCM achieves better results
than other peers. In particular, the SA value of LRFCM comes
up to 82.490% for the fourth medical image shown in Fig. 11. By
focusing on the marked red square in Fig. 12, we easily find that
FCM_S1, FCM_S2, FGFCM, and ARKFCM are sensitive to
noise. FLICM and KWFLICM are vulnerable to severe intensity
inhomogeneity. FRFCM brings overly smooth results due to the
use of gray level histograms. WFCM, SRFCM, and DSFCM_N
cause several contours to change. However, LRFCM acquires
clear contours and suppresses noise adequately. Moreover, its
segmentation result is closer to the ground truth than its peers’.

Fig. 12. Segmentation results for a medical image. The odd-numbered rows:
segmented images; and even-numbered rows: residual images. (a)–(l) Noisy
image and results of FCM_S1, FCM_S2, FGFCM, FLICM, KWFLICM, ARK-
FCM, FRFCM, WFCM, SRFCM, DSFCM_N, and LRFCM.

G. Results for Real-World Images

In the last experiments, we segment some real-world images.
They are represented as red–green–blue (RGB) color images.
It is easy to extend LRFCM to color image segmentation. We
apply the multivariate MR to color images [49]. Moreover, we
conduct the tight wavelet frame transform in each channel of an
RGB color image. The dimensionality of the obtained feature
set is three times higher than that of a gray image. The remaining
settings are similar to those in gray image segmentation. In the
following, we test real worlds coming from BSDS, MSRC, and
NEO. Note that we first compute SA, DC, PC, and PE values of
segmenting each image in BSDS and MSRC. Then, we compute
their average values for each dataset. The average segmentation
results on BSDS and MSRC are gathered in Table IV. To
illustrate LRFCM’s superior performance intuitively, we show
some visual comparison results with fixed clusters in Fig. 13.

According to Table IV, we observe that LRFCM exhibits
the best segmentation effects among all algorithms. The similar
finding can be acquired in Fig. 13. LRFCM can not only retain
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TABLE IV
AVERAGE SEGMENTATION PERFORMANCE ON

REAL-WORLD IMAGES IN BSDS AND MSRC

Fig. 13. Segmentation results for six real-world images in BSDS (column 1–4)
and MSRC (columns 5 and 6). From top to bottom: original images and results
of FCM_S1, FCM_S2, FGFCM, FLICM, KWFLICM, ARKFCM, FRFCM,
WFCM, SRFCM, DSFCM_N, and LRFCM.

true contours but also suppress clutter in color images. In con-
trast, FCM_S1, FCM_S2, FGFCM, FLICM, KWFLICM, and
ARKFCM achieve unsatisfactory visual results. These six al-
gorithms cannot preserve clear contours while losing important
image details. Superior to them, FRFCM, WFCM, and SRFCM
retain a large proportion of shapes. However, there are still a
small amount of clutter in their segmentation results. In addition,
DSFCM_N has unstable segmentation performance. As shown
in the penultimate row of Fig. 13, even though DSFCM_N has
slightly better ability to track the contours of the second image

TABLE V
SEGMENTATION PERFORMANCE ON REAL-WORLD IMAGES IN NEO

Fig. 14. Segmentation results for the first real-world image in NEO. (a)–(l)
Noisy image and results of FCM_S1, FCM_S2, FGFCM, FLICM, KWFLICM,
ARKFCM, FRFCM, WFCM, SRFCM, DSFCM_N, and LRFCM.

and last one, it cannot exhibit good segmentation effects for other
images.

Besides real-world images in BSDS and MSRC, we segment
two real-world images from NEO. We clarify that each image
represents a specific scene. Since there exists unknown noise
in these images, their reference (original) images are missing.
In the sequel, indicator EI cannot directly used. To address this
issue, we randomly shoot each scene for 50 times within the time
span 2000–2019, which generates the mean image. It is used as
the noise-free (reference) image. The calculated EI, PC, and PE
values are given in Table V. The corresponding visual results
are illustrated in Figs. 14 and 15.

Fig. 14 shows the results for segmenting a real-world image
showing sea ice and snow extent. The colors represent where
the land and ocean are covered by snow and ice per week (here
is February 7–14, 2015). The number of clusters is set to 4.
Fig. 15 shows the segmentation results on a real-world image
showing chlorophyll concentration. The colors represent where
and how much phytoplankton are growing over a span of days.
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Fig. 15. Segmentation results for the second real-world image in NEO. (a)–(l)
Noisy image and results of FCM_S1, FCM_S2, FGFCM, FLICM, KWFLICM,
ARKFCM, FRFCM, WFCM, SRFCM, DSFCM_N, and LRFCM.

The black areas show where the satellite could not measure
phytoplankton. The number of clusters is set to 2. Obviously,
most of algorithms, i.e., FCM_S1, FCM_S2, FGFCM, FLICM,
KWFLICM, ARKFCM, and WFCM, cannot fully suppress un-
known noise. Both FRFCM and DSFCM_N have an aptitude for
noise suppression. However, they produce incorrect clusters, as
shown in Fig. 14. Even though SRFCM exhibits a good capacity
of noise suppression, it forges several topology changes in the
form of black patches, as shown in Fig. 15. Compared with its ten
peers, LRFCM can remove unknown noise and preserve image
contours as well. As Table V illustrates, LRFCM universally
achieves the better EI, PC, and PE values than its peers. In par-
ticular, the EI values of LRFCM are universally smaller than the
others’, which indicates that LRFCM acquires better uniformity
in segmented images. Note that the EI value of LRFCM is down
to 0.804 for the first real-world image illustrated in Fig. 14.
Based on the quantitative comparison results, we can conclude
that LRFCM outperforms other FCM-related algorithms.

H. Computational Complexity and Time

In order to exhibit the segmentation efficiency of LRFCM, we
compare its computing overhead with its peers’. The computa-
tional complexity of all algorithms are presented in Table VI.
We again clarify that K is the number of image pixels, c is the
number of prototypes, t is the iteration count, ω represents the
size of a filtering window, |Nj |denotes the size of a local window
centralized at pixel j, and μ is the number of pixel levels in an
image. Generally, μ� K.

As Table VI shows, FGFCM and FRFCM have lower com-
putational complexity than its peers due to μ� K. Except
WFCM, SRFCM, and LRFCM, the computational complexity
of other algorithms is regarded as O(K). Since O(K logK)
associated with a tight wavelet transform is close to O(K),

TABLE VI
COMPUTATIONAL COMPLEXITY OF ALL ALGORITHMS

TABLE VII
COMPUTING TIME (IN SECONDS) ON DIFFERENT IMAGES

the computational complexities of WFCM, SRFCM, and LR-
FCM are not high. In addition, to compare the practicability
between LRFCM and its peers, we exhibit the computing time
(in seconds) of all algorithms for segmenting different images, as
summarized in Table VII. To ensure a fair comparison, we note
that all experiments are completed with MATLAB running on
a laptop with Intel(R) Core(TM) i5-8250 U CPU of (1.60 GHz)
and 8.0 GB RAM.

As Table VII indicates, for gray image segmentation, all
algorithms have acceptable computing overheads. Among them,
FLICM and KWFLICM are time-consuming. In contrast,
FGFCM and FRFCM take the least time due to the usage of
gray level histograms. LRFCM runs faster than DSFCM_N,
FLICM, and KWFLICM since they require fewer iterations than
the latter do. When copying with color image segmentation,
all algorithms incur more computational cost. Obviously, the
computing time needed by FLICM and KWFLICM is much
higher than that of other algorithms. FGFCM and FRFCM
still exhibit high computational efficiency. Although LRFCM is
slightly slower than comparative algorithms except DSFCM_N,
FLICM, and KWFLICM, its good performance makes up for
this shortcoming.

V. CONCLUSION

In this article, we have proposed a comprehensive FCM-
related algorithm for image segmentation by taking advantage of
various mathematical tools. By preprocessing an observed image
by using MR, its weighted sum image with good properties is
first generated. With the use of tight wavelet frames, the feature
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set associated with the weighted sum image is taken as data
for clustering, which is adaptive for the analysis of image data.
More importantly, an �0 regularization-based FCM algorithm
is proposed, which implies that the favorable estimation of the
residual is obtained and the ideal value participates in clustering.
In fact, the sparsity imposed on the residual is beneficial to
acquire more suitable estimation, which is positive for segmen-
tation performance improvement. As a postprocessing step, MR
is also applied to filter the obtained labels, which implies that the
performance of the �0 regularization-based FCM is improved.
Finally, many supporting experiments are conducted to show
that the proposed algorithm is superior to other FCM-related
algorithms even though its running time is slightly larger than
the time required by a couple of compared algorithms.

Although experimental results illustrate that the proposed
algorithm is effective and practical, there exist some open issues
worth pursuing. For example, can one apply the proposed algo-
rithm to nonflat domains, such as remote sensing [50], computer
networks, ecological systems [51], transportation networks [52],
and 3D images [53], [54]? How to automatically select the
numbers of clusters is another research topic?

APPENDIX

PROOF OF THEOREM III.1

Let us consider a minimization problem

rjl=argmin
rjl

Γ=

c∑
i=1

∑
n∈Nj

um
in ‖xjl−rjl−vil‖2

1 + dnj
+
∑
n∈Nj

βl|rjl|0
1 + dnj

.

(25)
According to (9), we rewrite the energy function Γ as

Γ=

{∑c
i=1

∑
n∈Nj

um
in ‖xjl−rjl−vil‖2

1+dnj
+
∑

n∈Nj

βl

1+dnj
, rjl �=0∑c

i=1

∑
n∈Nj

um
in ‖xjl−vil‖2

1+dnj
, rjl=0

.

(26)
By introducing two variables a and b, we have

a =

∑c
i=1

∑
n∈Nj

um
in (xjl−vil)
1+dnj∑c

i=1

∑
n∈Nj

um
in

1+dnj

, b =
∑
n∈Nj

βl

1 + dnj
.

Thus, (26) can be rewritten as

Γ =

{
(rjl − a)2 + b, rjl �= 0
a2, rjl = 0

. (27)

For the first subproblem in (27), we have Γmin = b when
rjl = a. For the second subproblem in (27), we have Γmin = a2

when rjl = 0. To sum up, for minimizing (27), we have

Γmin =

{
b, a2 ≥ b
a2, a2 < b

, rjl =

{
a, a2 ≥ b
0, a2 < b

. (28)

Here, rjl is reformulated as

rjl =

{
a, a ≥ √b
0, a <

√
b
. (29)

By introducing a hard-thresholding operator H expressed by
(21), (29) is rewritten as

rjl = Hb(a).
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