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Abstract After many years of study, the subject of image
denoising on the flat domain is well developed. However,
many practical problems arising from different areas, such
as computer vision, computer graphics, geometric model-
ing and medical imaging, involve images on the irregular
domain sets such as graphs. In this paper, we consider Pois-
son andmixed Poisson–Gaussian noise removal of images on
graphs. Based on the statistical characteristic of the observed
noisy images, we propose a wavelet frame-based variational
model to restore images on graphs. The model contains a
weighted �2 fidelity term and an �1-regularized term which
makes additional use of the tight wavelet frame transform
on graphs in order to preserve key features such as textures
and edges of images. We then apply the popular alternat-
ing direction method of multipliers (ADMM) to solve the
model. Finally, we provide supporting numerical experi-
ments on graphs and compare with other denoising methods.
The results on some image denoising tasks indicate the effec-
tiveness of our method.

Keywords Images on graphs · Tight wavelet frames ·
Poisson noise · Mixed Poisson–Gaussian noise

1 Introduction

In recent years, many interesting scientific problems have
increasingly involved analyzing and manipulating structured
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data. Suchdata often consist of sampled real-valued functions
defined on some irregular domain sets such as graphs. As
many traditional methods for signal processing are designed
for data defined on regular Euclidean spaces, such as image
and video processing, the development ofmathematical tools
and methods that are able to accommodate complicated data
domains is also an important topic. In practical applications,
many data sets such as mesh surfaces, point clouds and data
defined on network-like structures can naturally be modeled
as scalar functions defined on the vertices of graphs, which
are generally considered as a certain discretization or random
samples from some Riemannian manifold [1,10,16,19,31,
37].

Image processing on the graph domain is interesting, for
it arises in many practical applications and provides new
insights in signal processing (see e.g. [12,25,38]). Graphs
provide a flexible generalization of regular Euclidean domain
and surface domain [2,4,15,20,28,35,37], and they can
approximate arbitrary topology and geometry structure. For
example, Niyobuhungiro et al. [25] considered an analogue
of the well-known ROF denoising model [28] on a general
finite directed and connected graph. Zosso et al. [38] consid-
ered a graph-based approach for image segmentation. More
recently, Dong [12] introduced a tight wavelet frame trans-
form on graphs and discussed graph data denoising.

A graph is denoted by G = {V, E, ω}, where V := {vk :
k = 0, . . . , K − 1} is the set of vertices, E ⊂ V × V is the
set of edges and ω : E �→ R

+ denotes a weighted function
of every two edges. Let u : V �→ R be an image function
defined on the graph G, which can be viewed as a vector in
R

K . Due to sampling measurements and instruments, sam-
pling noise is inevitable [29]. Thus, a fundamental problem is
to remove noise to obtain high-quality images before further
processing. Let fG be an observed image on graph G which
is formulated as
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fG = u + η, (1.1)

where u is the clean image and η is the perturbation noise.
When η in (1.1) is additive white Gaussian noise, it is mostly
considered in the early literature for its good characterization
of system noise, whereas non-Gaussian type of noise are also
encountered in many real observations due to noisy sensors
and channel transmission (see e.g. [18]).

An important variant is Poisson noise, which is generally
produced by low number of photons, such as fluorescence
microscopy, emission tomography. The poisson noise data,
i.e., the probability of receiving k particles is given by

P(k) = e−τ τ k

k! , k = 0, 1, 2, . . . , (1.2)

where τ is the expected value and the variance of random
counts. When images are defined on Euclidean space, many
studies have been made for poisson noise removal in the past
decade (see e.g. [9,18,21,22,36]). For example, based on the
statistics of Poisson noise, the generalized Kullback–Leibler
(KL)-divergence fidelity was used in a variational model for
Poisson noise removal [11]. Luisier et al. in [23] constructed
a Stein’s unbiased risk estimator (SURE) in the wavelet
domain for removal of mixed Poisson–Gaussian noise. Gong
et al. in [18] proposed a universal �1 + �2 fidelity term for
mixed or unknown noise removal. Recently, Staglianò et al.
[33] and Li et al. [22] studied Poisson noise removal by
approximating the generalized KL-divergence in terms of
a weighted least-squares function.

The main focus of this paper is to extend Poisson noise
removal of images on regular Euclidean space to images
defined on graphs. We assume that the observation fG on
graph is corrupted by Poisson noise, i.e.

fG ∼ Poisson(u),

and the noise on each pixel is independent. Inspired by
some recentwavelet frames-based image restorationmethod-
ologies (see [8,14,18,22] and the references therein), we
propose the following variational model to remove noise:

min
u

E(u) := 1

2
‖u − fG√

u
‖2�2(G) + λ‖Wu‖�1(G). (1.3)

Here, the first term can be rewritten as 1
2‖u − fG‖2

�−1 ,
where � = diag(u), is a reweighed �2 fidelity term. This
term was first introduced in [22,33] for approximating the
KL-divergence fidelity. In practical implement, in order to
guarantee the numerical stability, we add a very small pos-
itive constant (the fixed background image, see [3,6,30]) to
u in model (1.3). The second term is a regularization term,
where W is the tight wavelet frame transform on graphs,
‖ · ‖�1(G) denotes the �1 vector norm on graphs, and λ is

a positive parameter to balance the two terms. The detailed
derivation of model (1.3) will be given in Sect. 3.

The regularization term is designed based on a priori
assumption on u. One of the assumptions commonly used
is the sparsity of the underlying solutions in the wavelet
frame domain [7,8,14,22]. The effectiveness of wavelet
tight frames has been proved in many applications in signal
and image processing [8,14,18,22], since they are able to
sparsely approximate piecewise smooth functions in an effi-
cient way and provide fast decomposition and reconstruction
algorithms. We will show that such a simple system can also
be used to effectively restore images defined on graphs from
noisy data. The extension of image denoising model on flat
domain to graph data denoising is not trivial because of the
nonlinear nature of the graphs and the corresponding algo-
rithms [12,13]. Furthermore, because of the �1-norm, the
regularization term ‖Wu‖�1(G) gives preference to a solu-
tion u whose wavelet coefficient sequence is sparse, and to
keep the important features of image data such as textures
and edges while removing spurious information.

The difficulty for solving (1.3) is the nonlinear nature of
the graph domain, and to either approximate or directly solve
the weighted square problem involving unknown u in the
fidelity term. We are interested in taking advantage of the
weighted least square structure and utilizing popular effi-
cient sparse regularization scheme, such as the alternating
direction method of multipliers (ADMM) [5,8,17] to solve
the model.

The rest of this paper is organized as follows: in Sects. 2.1
and 2.2, we give a brief review of spectral graph theory and
the wavelet frame transform on graphs. Next, in Sect. 3.1, we
propose awavelet frame-based variationalmodel for removal
of Poisson noise of images on graphs. Then, we present an
algorithm to solve the model. In Sect. 3.2, we consider the
case of removal of mixed Poisson–Gaussian noise of images
on graphs. In the last section, we present some numerical
experiments and compare with other denoising methods.

2 Background

2.1 Graph Fourier transform

To understand and analyze the data on graphs, we first review
the spectral graph theory, especially the graph Laplacian,
which is widely used to reveal the geometric properties of
the graph. Let G := {V, E, ω} be a graph, where V := {vk :
k = 0, . . . , K −1} is the set of vertices, E ⊂ V ×V is the set
of edges, and ω : E �→ R

+ denotes a weight function. Here,
we choose the following commonly used weight function

ω(vk, vk′) := e−‖vk−vk′ ‖22/ρ, ρ > 0. (2.1)
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Poisson noise removal of images on graphs using tight wavelet frames 1359

Let A := (ak,k′) be the adjacency matrix of G with

ak,k′ :=
{

ω(vk , vk′ ) if vk and vk′ are connected by an edge in E,

0 otherwise.

Let D := diag{d[0], d[1], . . . , d[K − 1]} be the degree
matrix of G, where d[k] is the degree of node vk defined
by d[k] := �k′ak,k′ . Then the (unnormalized) graph Lapla-
cian L can be defined by the following form

L := D − A.

With eigenvalue decomposition, we denote the set of pairs
of eigenvalues and eigenfunctions ofL as {(λk , uk)}K−1

k=0 with
0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λK−1. The eigenfunctions form
an orthonormal basis for all functions on the graph:

〈uk, uk′ 〉 :=
K−1∑
n=0

uk[n]uk′ [n] = δk,k′ .

Let fG : V �→ R be a function on the graph G. Then its
Fourier transform is defined by

f̂G [k] :=
K−1∑
n=0

fG [n]uk[n], k = 0, 1, . . . , K − 1.

2.2 Wavelet frame transform on graphs

Wavelet frames have been proved over the past decade
to be an exceptionally useful tool for image denoising,
inpainting, function and surface reconstruction, etc. (see
[7,8,13,14,22,34,35] and many references therein). Much
of the power of wavelet methods comes from their ability to
represent both smooth and/or locally bumpy functions in an
efficient way and provide time and frequency localization.
In this subsection, we introduce wavelet frame transform
on graphs. Interested readers should consult [12] for more
details.

A countable set X ⊂ L2(R) is called a tight frame of
L2(R) if

f =
∑
g∈X

〈 f, g〉g, ∀ f ∈ L2(R),

where 〈·, ·〉 denotes the inner product of L2(R). A wavelet
system X (
) is defined to be a collection of dilations and
shifts of a finite set 
 := {ψ1, . . . , ψr } ⊂ L2(R),

X (
) := {ψ�, j,k = 2 j/2ψ�(2
j · −k), 1 ≤ � ≤ r, j, k ∈ Z}.

When X (
) forms a tight frame, it is called a wavelet tight
frame.

To construct wavelet tight frames, one usually starts with
a refinable function φ with a refinement mask a0 satisfying

φ = 2
∑
k∈Z

a0[k]φ(2 · −k).

The idea of an MRA-based construction of a wavelet tight
frame is to find masks a�, which are finite sequences, such
that

ψ� = 2
∑
k∈Z

a�[k]φ(2 · −k), 1 ≤ � ≤ r.

The sequences a1, . . . , ar are the high pass filters of the sys-
tem, and a0 is the low pass filter.

The Unitary Extension Principle (UEP) of [26,27] pro-
vides a general theory of the construction of tight wavelet
frame. Roughly speaking, X (
) forms a tight frame pro-
vided that

r∑
�=0

|̂a�(ξ)|2 = 1 and
r∑

�=0

â�(ξ )̂a�(ξ + π) = 0,

where the Fourier series of a� is denoted as

â�(ξ) :=
∑
k∈Z

a�[k]e−ikξ .

As an application of UEP, a family of wavelet tight frame
systems is derived in [26] by using uniform B-splines as
the refinable function φ. The simplest system in this fam-
ily is the piecewise linear B-spline frame, where φ = B2 =
max(1 − |x |, 0) with the refinement mask a0 = 1

4 [1, 2, 1],
and a1 =

√
2
4 [1, 0,−1], a2 = 1

4 [−1, 2,−1]. Then, the sys-
tem X ({ψ1, ψ2}) defined in (2.2) is a tight wavelet frame of
L2(R).

For a graph G := {V, E, ω}, we formulate function fG :
V �→ R by a K -dimensional vector defined on the vertices.
Let {λk : k = 0 . . . , K − 1} be the eigenvalues of L defined
in Sect. 2.1. In the following, we introduce the discrete tight
wavelet frame transform of fG in the Fourier domain.

Let {a� : 0 ≤ � ≤ r} be the masks of a tight frame
system X (
) and â∗

� be the complex conjugate of â�. The
(undecimated) L-level tight wavelet frame decompositionW
is defined as

W fG := {W�,p fG : 0 ≤ � ≤ r, 1 ≤ p ≤ L}

with

Ŵ�,p fG [k]

:=
{
â∗
� (2−Nλk) f̂G [k] p = 1

â∗
� (2−N+p−1λk )̂a

∗
0 (2

−N+p−2λk) · · · â∗
0 (2

−Nλk) f̂G [k] 2 ≤ p ≤ L .

(2.2)
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Here, the index �, 0 ≤ � ≤ r , denotes the band of the trans-
form, and the index p denotes the level of the transform. The
dilation scale N is chosen as the smallest integer such that
λmax := λK−1 ≤ 2Nπ . Note that the scale N is selected such
that 2−Nλk ∈ [0, π ] for 0 ≤ k ≤ K − 1.

Let α := W fG := {α�,p : 0 ≤ � ≤ r, 1 ≤ p ≤ L} with
α�,p := W�,p fG , be the tight wavelet frame coefficients
of fG . We denote the tight wavelet frame reconstruction as
WTα, which is defined by the following iterative procedure

α̂0,p−1[k] =
r∑

�=0

â�(2
−N+p−1λk )̂α�,p[k]

for p = L , L − 1, . . . , 1,

where α0,0 := WTα is the reconstructed graph data from α.
By [12, Theorem 3.1], we haveWTW = I, i.e.WTW fG =
fG for any function fG defined on graph G.
In practical computations, it is very expensive to obtain

the full set of eigenvectors and eigenvalues of the graph
Laplacian of large graphs. A solution to such challenge is
to approximate masks by Chebyshev polynomials [24,32],
so that the eigenvalue decomposition of the graph Lapla-
cian is not needed. The masks a�, 0 ≤ � ≤ r , that we use
are finitely supported sequences, thus â� are trigonometric
polynomials and can be accurately approximated by low-
degree Chebyshev polynomials. The Chebyshev polynomial
approximation of the mask â�(ξ), ξ ∈ [0, π ] can be formu-
lated as

â�(ξ) ≈ T n
� (ξ) = 1

2
c�,0 +

n−1∑
k=1

c�,kTk(ξ),

where

c�,k = 2

π

∫ π

0
cos(kθ )̂a�

(π

2
(cos(θ) + 1)

)
dθ,

and

Tk(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 k = 0,

ξ − π/2

π/2
k = 1,

4

π
(ξ−π/2)Tk−1(ξ)−Tk−2(ξ) k=2, 3, . . . .

Note that the graph Laplacian L admits the eigenvalue
decomposition L = U�UT , where � := diag{λ0, λ1, . . . ,
λK−1} and columns of U are the eigenvectors. Then the
wavelet frame transform (2.2) can be rewritten in the matrix
form in time domain:

W�,p fG [k]

:=
{
U â∗

� (2−N�)UT fG p = 1

U â∗
� (2−N+p−1�)̂a∗

0(2
−N+p−2�) · · · â∗

0(2
−N�)UT fG 2 ≤ p ≤ L

,

where â∗
�(γ�):=diag{̂a∗

� (γ λ0), â∗
� (γ λ1), . . . , â∗

� (γ λK−1)}.
If we substitute â� by polynomial T n

� , then

U â∗
�(2

−N�)UT fG ≈ UT n∗
� (2−N�)UT fG

= T n∗
� (2−NU�UT ) fG = T n∗

� (2−NL) fG (2.3)

and for 2 ≤ p ≤ L ,

U â∗
�(2

−N+p−1�)̂a∗
0(2

−N+p−2�) · · · â∗
0(2

−N�)UT fG

≈ T n∗
� (2−N+p−1L)T n∗

0 (2−N+p−2L) · · · T n∗
0 (2−NL) fG .

(2.4)

Thus, by the iterative definition of Chebyshev polyno-
mials, only matrix-vector multiplications are involved for
computations of (2.3) and (2.4), and we don’t need to obtain
the full set of eigenvectors and eigenvalues of L. Similarly,
the wavelet frame reconstruction WT can also be approxi-
mately computed.

3 Model and algorithm

3.1 Poisson noise removal of images on graphs

For a graph G := {V, E, ω}, we formulate function fG :
V �→ R by a K -dimensional vector defined on the vertices.
Let fG be the observed noisy image on graph which is for-
mulated as

fG = u + η,

where η is the perturbation noise. We assume that fG is cor-
rupted by Poisson noise (see 1.2), i.e.

fG ∼ P(u),

and the noise on each pixel is independent.
Then, given u, we have the likelihood of observing fG

P( fG |u) =
K−1∏
i=0

u fi
i e−ui

fi ! ,

where ui and fi denote the i th element of u and fG . By the
properties of Poisson distribution, we obtain the mean and
variance of fG as follows

E( fG |u) = Var( fG |u) = u.

Let

η := fG − u
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Poisson noise removal of images on graphs using tight wavelet frames 1361

be the “additive” random noise of the underlying image u on
graph G. In the following, we approximate η by the normal
distribution.

Given u, we have

E(η|u) = E( fG |u) − u = 0, Var(η|u) = Var( fG |u) = u.

Then, we approximate η by the additive Gaussian noise
N (0, u), i.e.,

P(η|u) ∝ exp

{
−1

2
ηT�−1η

}

= exp

{
−1

2
( fG − u)T�−1( fG − u)

}
, (3.1)

where � is the covariance matrix. Due to the independence
of noise at each element, we have

� = diag(u).

We then take negative log of the normal distribution (3.1) and
have

− logP(η|u) ∝ 1

2
( fG − u)T�−1( fG − u).

Thus, by using the maximum likelihood estimates, we
obtain the following fidelity term

1

2
‖u − fG‖2

�−1 := 1

2

∥∥∥∥u − fG√
u

∥∥∥∥
2

�2(G)

. (3.2)

Here, the weighted �2 norm of a vector x ∈ R
K is defined as

‖x‖2
�−1 := xT�−1x. The fidelity term (3.2) was introduced

in [22,33] for Poisson data reconstruction. We here extend it
to remove Poisson noise of images on graphs.

Under the assumption that the underlying solution is
sparse in the wavelet frame domain, we propose the follow-
ing model for removing Poisson noise of images on graphs

min
u

1

2

∥∥∥∥u − fG√
u

∥∥∥∥
2

�2(G)

+ λ‖Wu‖�1(G). (3.3)

Here, the first term is a fitting term based on the noise char-
acteristic and derived by the likelihood function discussed
above; the second term is a regularization term, and λ is a
parameter to balance the two terms.

Note that the division and square root operator in the fitting
term are both element wise. In case u = 0, in practical imple-
ment, in order to guarantee the numerical stability, we add
a very small positive constant (the fixed background image
[3,6,30]) to u in model (3.3). To handle the unknown weight
in the fitting term, following the line of [22], we apply the
following iteration to solve the model.

Let u0 = fG . For k = 1, 2, . . ., let

uk+1 := arg min
u

1

2

∥∥∥∥u − fG√
uk

∥∥∥∥
2

�2(G)

+ λ‖Wu‖�1(G). (3.4)

The functional in (3.4) is an �1-regularized least-squares
problem. Then, there are iterative solvers like the alternating
direction method of multipliers (ADMM) [5,8,17] to obtain
uk+1, i.e.
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk+1 = argmin
u

1

2

∥∥∥∥u − fG√
uk

∥∥∥∥
2

�2(G)

+ μ

2
‖Wu − dk + bk‖2�2(G)

dk+1 = argmin
d

λ‖d‖�1(G) + μ

2
‖Wuk+1 − d + bk‖2�2(G)

bk+1 = bk + Wuk+1 − dk+1

.

(3.5)

Let�k = diag(uk). Then, the solution to the first subproblem
of (3.5) can be determined by solving the system of equations

(�−1
k + μWTW)uk+1 = μWT (dk − bk) + �−1

k fG , (3.6)

which, because of WTW = I, can be simplified to

(�−1
k + μI)uk+1 = μWT (dk − bk) + �−1

k fG .

The second subproblem of (3.5) has a closed form solution,
and dk+1 is given by the soft-shrinkage operator (see [5,8,
17])

dk+1 = sign(Wuk+1 + bk) ·max(|Wuk+1 + bk | − λ/μ, 0),

(3.7)

where each operation is performed componentwisely.
Now, combining (3.6) and (3.7), we obtain Algorithm 1

for Poisson noise removal of images on graphs.

Algorithm 1 Algorithm for removal of Poisson noise on
graphs
Initialize: ε > 0; u0 = fG ; d0 = 0; b0 = 0; �0 = diag( fG)

while ‖uk−1 − uk‖2 > ε or k = 0 do
uk+1 = (�−1

k + μI)−1(μWT (dk − bk) + �−1
k fG)

dk+1 = sign(Wuk+1 + bk) · max(|Wuk+1 + bk | − λ/μ, 0)
bk+1 = bk + Wuk+1 − dk+1
�k+1 = diag(uk+1)

k = k + 1
end while

3.2 Mixed Poisson–Gaussian noise

Previously,wediscussedPoissonnoise removal. In real graph
data observation, there may exist other system-born noise
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Fig. 1 The figure shows three images (first row), ‘Slope’, ‘Eric’ and ‘Earth’, which are mapped onto the graph of the unit sphere (second row)

Fig. 2 The figure shows two
graphs, ‘flower’ and ‘cup’,
which are generated by mapping
the image ‘Slope’

such as mixed Poisson–Gaussian. The observed image fG
on graph is corrupted by mixed Poisson–Gaussian noise fol-
lowing the distribution

fG ∼ P(u) + N (0, σ 2),

where σ 2 is the variance of additive Gaussian noise. Similar
to the approach in Sect. 3.1, by applying the normal distri-
bution (3.1) with covariance matrix � = diag(u) + σ 2 I , the
probability density function of the observed image data fG
can be approximated again. Then, we have a new weighted

�2 fidelity for removing mixed Poisson–Gaussian noise on
graphs,

1

2

∥∥∥∥ u − fG√
u + σ 2

∥∥∥∥
2

�2(G)

.

Combining with the tight wavelet frame regularization,
we propose the following denoising model

min
u

1

2

∥∥∥∥ u − fG√
u + σ 2

∥∥∥∥
2

�2(G)

+ λ‖Wu‖�1(G). (3.8)
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Poisson noise removal of images on graphs using tight wavelet frames 1363

Fig. 3 Denoising results of the simulated noisy images on graphs cor-
rupted by Poisson noise. From left to right noisy-free images on graphs,
noisy images, denoised images. Parameters in the algorithm (Slope:

λ = 0.035, μ = 0.35; Eric: λ = 0.035, μ = 0.7; Earth: λ = 0.01,
μ = 0.1; flower: λ = 0.035, μ = 0.875; cup: λ = 0.1, μ = 1)

Compared with model (3.3), here we extended the weighted
�2 fidelity term to mixed Poisson–Gaussian noise by a small
modification of the Poisson noise version. Thus, the corre-

sponding algorithm solving (3.8) is similar to Algorithm 1
except adding σ 2 in estimation and updating covariance
matrix.
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1364 C. Wang, J. Yang

Algorithm 2 Algorithm for removal of mixed Poisson–
Gaussian noise on graphs
Initialize: ε > 0; u0 = fG ; d0 = 0; b0 = 0; �0 = diag( fG) + σ 2 I
while ‖uk−1 − uk‖2 > ε or k = 0 do
uk+1 = (�−1

k + μI)−1(μWT (dk − bk) + �−1
k fG)

dk+1 = sign(Wuk+1 + bk) · max(|Wuk+1 + bk | − λ/μ, 0)
bk+1 = bk + Wuk+1 − dk+1
�k+1 = diag(uk+1) + σ 2 I
k = k + 1

end while

Table 1 Data summary and computational efficiency of Algorithm 1

Model MSE (×10−4) SNR NCC Iterations Time (s)

Slope 2.5106 31.9131 0.9962 25 7.1813

Eric 3.3796 33.4789 0.9906 20 5.8702

Earth 1.5627 29.0586 0.9930 30 5.6086

Flower 3.1208 30.9429 0.9968 25 4.0504

Cup 1.9568 33.2585 0.9969 35 6.0211

4 Numerical results and discussions

In the previous section, we discussed the model and algo-
rithm for removing Poisson and mixed Poisson–Gaussian
noise of images on graphs. In this section, we provide numer-
ical experiments to test the performance of our method and
compare with certain existing methods, such as the classical
Laplacian smoothing method [4], the KL-divergence model
[33] and Gong et al.’ method [18]. Here, the KL-divergence
model [33] and Gong et al.’ model [18] are, respectively,
formulated as

min
u

1T u + fG
T log(u) + λ‖∇u‖�1(G),

and

min
u

‖u − fG‖2�1(G) + ν‖u − fG‖2�2(G) + λ‖Wu‖�1(G).

In the first three experiments, the image functions defined
on a graph are generated by mapping three images, ‘Slope’,
‘Eric’ and ‘Earth’, onto the unit sphere (see Fig. 1). Here, a
unit sphere with 16,728 sampled vertices is selected as the
graph. In the fourth and fifth experiments, two graphs named
as ‘flower’ and ‘cup’ with 7919 and 10,840 sampled ver-
tices are considered. The ‘Slope’ image function is mapped
onto the graphs to test the performance of our approach (see
Fig. 2). The two graphs are borrowed from the public 3D
model database: http://3dmdb.com/.

In the computation of graph Laplacian, we choose param-
eter ρ = 10 in the weight function (2.1). For wavelet frame
transform on graphs, we use the piecewise linear B-spline
tight wavelet frame [26],

â0(ξ) = cos2(ξ/2), â1(ξ) = 1√
2
sin(ξ),

â2(ξ) = sin2(ξ/2),

andweuse theChebyshev polynomials of degree 7 to approx-
imate the masks, i.e., n = 8 in (2.3). For simplicity, we
fix the level of wavelet frame transformation to 1, since
using higher decomposition levels only slightly improves the
denoising quality while the computation cost is noticeably
increased.

The Algorithms 1 and 2 are implemented with MATLAB
and experimented on a laptop with Intel Core i3-2310M
(2.10GHz) CPU and 6.0GB RAM. The parameters in our
algorithm are tuned to get the best visual outcome for
the simulated noisy images on the graph. The denoised
results u can be evaluated quantitatively by the mean
squared error (MSE), the signal-to-noise ratio (SNR) and
the normalized cross-correlation (NCC), which are defined
by

MSE(u, u) : = ‖u − u‖2�2(G)

K
, SNR(u, u) := −20 log10

‖u − u‖�2(G)

‖u‖�2(G)

,NCC(u, u) := uT u

uT u
,

where u denotes the noisy-free images on graph, and K is
the number of vertices.

4.1 Poisson noise removal

In this subsection, we test the performance of our approach
for Poisson noise removal of images on graphs. Here, the
clean image u is rescaled to an intensity ranging from 0
to 1200, and then the Poisson noise is added in MAT-
LAB using the function ‘poissrnd’. The denoised results
are shown in Fig. 3. The denoised error, number of itera-
tions and computational time for each image are given in
Table 1.

Then we compare the results of our approach with other
denoisingmethods. In Fig. 4, we visually show the difference
between our method and the classical Laplacian smoothing
method [4], the KL-divergence model [33] and Gong et al.’
method [18]. It can be seen that our results preserve the local
features better. Furthermore,wequantitatively compare these
methods by MSE, SNR and NCC, see Tables 2, 3 and 4 for
the results.

4.2 Mixed Poisson–Gaussian noise removal

In this subsection,we test the performance ofmixedPoisson–
Gaussian removal of images on graphs. Here, a Poisson noise
is added to the original image first as in Sect. 4.1. Then, a
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Fig. 4 Denoising results of the noisy images on graphs corrupted by Poisson noise. From left to right noisy-free images on graphs, Laplacian,
KL-divergence, Gong et al.’s results, ours

Table 2 MSEs comparison for removal of Poisson noise (×10−4)

Model Laplacian KL-divergence Gong et al. Ours

Slope 9.9995 3.3832 2.8153 2.5106

Eric 6.4938 4.8062 3.8114 3.3796

Earth 2.6659 2.1435 1.9636 1.5627

Flower 5.5115 4.5962 3.9658 3.1208

Cup 7.5561 3.4574 2.5424 1.9568

Gaussian noise with distribution N (0, σ 2) is added to the
image. We choose σ = 6. The denoised results are shown
in Fig. 5, and the denoised error, number of iterations and
computational time for each image are given in Table 5.

Table 3 SNRs comparison for removal of Poisson noise

Model Laplacian KL-divergence Gong et al. Ours

Slope 25.8827 30.6176 31.4156 31.9131

Eric 31.8352 31.9496 32.9567 33.4789

Earth 26.7390 27.6862 28.0668 29.0586

Flower 28.4729 29.2616 29.9023 30.9429

Cup 27.3911 30.7866 32.1215 33.2585

In the end,we compare the results of our approachwith the
Laplacian smoothing method [4], the KL-divergence model
[33] and Gong et al.’ method [18] both visually and quantita-
tively. Figure 6 shows that our results preserve most textures
and edges on graphs better. Furthermore, we compare these
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Table 4 NCCs comparison for removal of Poisson noise

Model Laplacian KL-divergence Gong et al. Ours

Slope 0.9903 0.9959 0.9961 0.9962

Eric 0.9866 0.9890 0.9891 0.9906

Earth 0.9902 0.9903 0.9923 0.9930

Flower 0.9954 0.9971 0.9968 0.9976

Cup 0.9952 0.9925 0.9960 0.9969

methods by MSE, SNR and NCC, see Tables 6, 7 and 8 for
the results.

5 Conclusion

In this paper, we considered Poisson and mixed Poisson–
Gaussian noise removal of images on graphs. Based on

Fig. 5 Denoising results of the noisy images on graphs corrupted by
mixed Poisson–Gaussian noise. From left to right noisy-free images on
graphs, noisy images on graphs, denoised images on graphs. Parame-

ters in the algorithm (Slope: λ = 0.035, μ = 0.35; Eric: λ = 0.035,
μ = 0.7; Earth: λ = 0.01, μ = 0.1; flower: λ = 0.035, μ = 0.875;
cup: λ = 0.1, μ = 1)
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Table 5 Data summary and computational efficiency of Algorithm 2

Model MSE (×10−4) SNR NCC Iterations Time(s)

Slope 2.6000 31.7612 0.9957 40 10.7767

Eric 3.4415 33.4001 0.9899 50 13.2963

Earth 1.6804 28.7431 0.9933 30 6.0435

Flower 3.2060 30.8260 0.9976 25 4.2854

Cup 2.0921 32.9682 0.9967 35 6.3073

the statistical characteristic of noise, we approximated the
probability density function of observed images by the nor-
mal distributions. Then, a fidelity term was derived by
the likelihood function. In addition, under the assumption
that the underlying image in the wavelet frame domain
is sparse, we proposed a variational model to denoise the

Table 6 MSEs comparison for removal of mixed Poisson–Gaussian
noise (×10−4)

Model Laplacian KL-divergence Gong et al. Ours

Slope 9.9992 3.4536 2.8471 2.6000

Eric 6.7159 4.8291 3.9092 3.4415

Earth 2.8232 2.3762 2.0820 1.6804

Flower 5.5976 4.9709 4.0719 3.2060

Cup 7.6861 3.7854 2.5553 2.0921

images on graphs.We then applied the popular iterative algo-
rithm ADMM to solve the model. Finally, we demonstrated
the numerical experiments to verify the practicability and
effectiveness of our approach, and compared with the clas-
sical Laplacian smoothing method [4], the KL-divergence

Fig. 6 Denoising results of the noisy images on graphs corrupted by mixed Poisson–Gaussian noise. From left to right noisy-free images on
graphs, Laplacian, KL-divergence, Gong et al.’s results, ours

123



1368 C. Wang, J. Yang

Table 7 SNRs comparison for removal of mixed Poisson–Gaussian
noise

Model Laplacian KL-divergence Gong et al. Ours

Slope 25.7891 30.5283 31.3669 31.7612

Eric 30.4966 31.9289 32.8467 33.4001

Earth 26.4899 27.2385 27.8126 28.7431

Flower 28.4055 28.9213 29.7876 30.8260

Cup 27.3170 30.3930 32.0997 32.9682

Table 8 NCCs comparison for removal of mixed Poisson–Gaussian
noise

Model Laplacian KL-divergence Gong et al. Ours

Slope 0.9907 0.9954 0.9957 0.9963

Eric 0.9868 0.9887 0.9899 0.9890

Earth 0.9900 0.9903 0.9923 0.9933

Flower 0.9965 0.9975 0.9976 0.9978

Cup 0.9927 0.9958 0.9966 0.9967

model [33] and Gong et al.’ method [18]. The results on
some image denoising tasks indicate the effectiveness of our
method.
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