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   Abstract—In this paper, we elaborate on residual-driven Fuzzy
C-Means  (FCM)  for  image  segmentation,  which  is  the  first
approach that realizes accurate residual (noise/outliers) estimation
and  enables  noise-free  image  to  participate  in  clustering.  We
propose  a  residual-driven  FCM  framework  by  integrating  into
FCM  a  residual-related  regularization  term  derived  from  the
distribution characteristic of different types of noise. Built on this
framework, a weighted -norm regularization term is presented
by  weighting  mixed  noise  distribution,  thus  resulting  in  a
universal residual-driven FCM algorithm in presence of mixed or
unknown  noise.  Besides,  with  the  constraint  of  spatial
information,  the  residual  estimation  becomes  more  reliable  than
that  only  considering  an  observed  image  itself.  Supporting
experiments  on  synthetic,  medical,  and  real-world  images  are
conducted. The results demonstrate the superior effectiveness and
efficiency of the proposed algorithm over its peers.
    Index Terms—Fuzzy C-Means,  image  segmentation,  mixed  or
unknown noise, residual-driven, weighted regularization.
 

I.  Introduction

A S an important approach to data analysis and processing,
fuzzy clustering has been widely applied to a number of

visible  domains  such  as  pattern  recognition  [1],  [2],  data
mining [3], granular computing [4], and image processing [5].
One of the most popular fuzzy clustering methods is a Fuzzy
C-Means (FCM) algorithm [6]–[8].  It  plays a significant  role

in  image  segmentation;  yet  it  only  works  well  for  noise-free
images.  In  real-world  applications,  images  are  often  conta-
minated  by  different  types  of  noise,  especially  mixed  or
unknown noise, produced in the process of image acquisition
and  transmission.  Therefore,  to  make  FCM  robust  to  noise,
FCM  is  refined  resulting  in  many  modified  versions  in  two
main  ways:  1)  introducing  spatial  information  into  its
objective  function  [9]–[14]  and  2)  substituting  its  Euclidean
distance  with  a  kernel  distance  (function)  [15]–[22].  Even
though  such  versions  improve  its  robustness  to  some  extent,
they  often  fail  to  account  for  high  computing  overhead  of
clustering.  To  balance  the  effectiveness  and  efficiency  of
clustering,  researchers  have  recently  attempted  to  develop
FCM  with  the  aid  of  mathematical  technologies  such  as
Kullback-Leibler  divergence  [23],  [24],  sparse  regularization
[25],  [26],  morphological  reconstruction  [24],  [27]–[29]  and
gray level histograms [30], [31], as well as pre-processing and
post-processing  steps  like  image  pixel  filtering  [32],
membership  filtering  [30]  and  label  filtering  [26],  [32],  [33].
To  sum  up,  the  existing  studies  make  evident  efforts  to
improve  its  robustness  mainly  by  means  of  noise  removal  in
each  iteration  or  before  and  after  clustering.  However,  they
fail to take accurate noise estimation into account and apply it
to improve FCM.
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Generally  speaking,  noise  can  be  modeled  as  the  residual
between  an  observed  image  and  its  ideal  value  (noise-free
image). Clearly, its accurate estimation is beneficial for image
segmentation as noise-free image instead of observed one can
then  be  used  in  clustering.  Most  of  FCM-related  algorithms
suppress  the  impact  of  such  residual  on  FCM  by  virtue  of
spatial  information.  So  far,  there  are  no  studies  focusing  on
developing  FCM  variants  based  on  an  in-depth  analysis  and
accurate  estimation  of  the  residual.  To  the  best  of  our
knowledge, there is only one attempt [34] to improve FCM by
revealing  the  sparsity  of  the  residual.  To  be  specific,  since  a
large  proportion  of  image  pixels  have  small  or  zero
noise/outliers, -norm  regularization  can  be  used  to
characterize  the  sparsity  of  the  residual,  thus  forming
deviation-sparse FCM (DSFCM). When spatial information is
used,  it  upgrades  to  its  augmented  version,  named  as
DSFCM_N.  Their  residual  estimation  is  realized  by  using  a
soft thresholding operation. In essence, such estimation is only
applicable to impulse noise having sparsity. Therefore, neither
of them can achieve highly accurate residual estimation in the
presence of different noise.

Motivated by [34],  to  address  a  wide  range of  noise  types,
we  elaborate  on  residual-driven  FCM  (RFCM)  for  image
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segmentation,  which  furthers  FCM’s  performance.  We  first
design  an  RFCM  framework,  as  shown  in Fig. 1(b),  by
introducing  a  regularization  term on  residual  as  a  part  of  the
objective  function  of  FCM.  This  term  makes  residual
accurately estimated.  It  is  determined by a noise distribution,
e.g.,  an -norm regularization  term corresponds  to  Gaussian
noise and an -norm one suits impulse noise.
 

(a) FCM

Partition
matrix

Observed
image

Segmented
image

Prototypes

FCM

(b) RFCM

Partition
matrix

Observed
image

Segmented
image

RFCM

Prototypes

Residual

 
Fig. 1.     A comparison between the frameworks of FCM and RFCM. (a)
FCM; and (b) RFCM.
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In real-world applications, since images are often corrupted
by  mixed  or  unknown  noise,  a  specific  noise  distribution  is
difficult to be obtained. To deal with this issue, by analyzing
the  distribution  of  a  wide  range  of  mixed  noise,  especially  a
mixture of Poisson, Gaussian and impulse noise, we present a
weighted -norm regularization  term  in  which  each  residual
is  assigned  a  weight,  thus  resulting  in  an  augmented  version
namely  WRFCM  for  image  segmentation  with  mixed  or
unknown  noise.  To  obtain  better  noise  suppression,  we  also
consider spatial information of image pixels in WRFCM since
it is naturally encountered in image segmentation. In addition,
we  design  a  two-step  iterative  algorithm  to  minimize  the
objective function of WRFCM. The first step is to employ the
Lagrangian multiplier method to optimize the partition matrix,
prototypes and residual when fixing the assigned weights. The
second  step  is  to  update  the  weights  by  using  the  calculated
residual.  Finally,  based  on  the  optimal  partition  matrix  and
prototypes, a segmented image is obtained.

This  study  makes  fourfold  contributions  to  advance  FCM
for image segmentation:

1)  For  the  first  time,  we propose  an  RFCM framework for
image  segmentation  by  introducing  a  regularization  term
derived  from  a  noise  distribution  into  FCM.  It  relies  on
accurate residual estimation to greatly improve FCM’s perfor-
mance, which is absent from existing FCMs.

2) Built on the RFCM framework, WRFCM is presented by
weighting  mixed  noise  distribution  and  incorporating  spatial
information.  The  use  of  spatial  information  makes  resulting
residual  estimation  more  reliable.  It  is  thus  regarded  as  a
universal RFCM algorithm for coping with mixed or unknown
noise.

ℓ2

3) We  design  a  two-step  iterative  algorithm  to  realize
WRFCM. Since only  vector norm is involved, it  is fast by

virtue of a Lagrangian multiplier method.
4)  WRFCM  is  validated  to  produce  state-of-the-art

performance  on  synthetic,  medical  and  real-world  images
from four benchmark databases.

ℓ2

The  originality  of  this  work  comes  with  a  realization  of
accurate  residual  estimation  from  observed  images,  which
benefits  FCM’s  performance  enhancement.  It  achieves  more
accurate  residual  estimation  than  DSFCM  and  DSFCM_N
introduced  [34]  since  it  is  modeled  by  an  analysis  of  noise
distribution characteristic replacing noise sparsity. In essence,
the proposed algorithm is an unsupervised method. Compared
with  commonly  used  supervised  methods  such  as  convolu-
tional  neural  networks  (CNNs)  [35]–[39]  and  dictionary
learning [40], [41], it realizes the residual estimation precisely
by virtue of a regularization term rather than using any image
samples to  train a  residual  estimation model.  Hence,  it  needs
low computing overhead and can be experimentally executed
by using a  low-end CPU rather  than a  high-end GPU, which
means that its practicality is high. In addition, it is free of the
aid  of  mathematical  techniques  and  achieves  the  superior
performance  over  some  recently  proposed  comprehensive
FCMs.  Therefore,  we  conclude  that  WRFCM  is  a  fast  and
robust  FCM  algorithm.  Finally,  its  minimization  problem
involves an  vector norm only. Thus it can be easily solved
by using a well-known Lagrangian multiplier method.

Section  II  details  the  conventional  FCM  and  the  proposed
methodology.  Section  III  reports  experimental  results.
Conclusions and some open issues are given in Section IV. 

II.  FCM and Proposed Methodology
 

A.  Fuzzy C-Means (FCM)
X = {x j ∈ RL : j = 1,2, . . . ,K} x j

L x j = (x j1, x j2, . . . , x jL)T T
Given  is  a  set ,  where 

contains  variables, i.e.,  with  being
the  transpose  of  a  vector.  FCM  is  applied  to  cluster X by
minimizing:
 

J(U,V) =
c∑

i=1

K∑
j=1

um
i j∥x j− vi∥2 (1)

U = [ui j]c×K∑c
i=1 ui j = 1 j = 1,2, . . . ,K 0 <

∑K
j=1 ui j < K for i = 1,

2, . . . ,c V = {vi : i = 1,2, . . . ,c} ∥ · ∥
m

m > 1

where  is  a  partition  matrix  under  constraints
 for  and 

 ,  is  a  prototype  set,  stands
for  the  Euclidean  distance,  and  denotes  a  fuzzification
exponent ( ).

An alternating iteration scheme [8] is used to minimize (1).
Each iteration is realized as follows:
 

u(t+1)
i j =

(∥x j− v(t)
i ∥2)

−1
m−1

c∑
q=1

(∥x j− v(t)
q ∥2)

−1
m−1

 

v(t+1)
il =

K∑
j=1

(
u(t+1)

i j

)m
x jl

K∑
j=1

(
u(t+1)

i j

)m

t = 0,1,2, . . . , l = 1,2, . . . ,and Lwhere  is  an iterative step and .
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ε
∥U(t+1)−U(t)∥ < ε
By  presetting  a  threshold ,  the  procedure  stops  when

. 

B.  Noise Model
K

X = {x j : j = 1,2, . . . ,K} x j = {x jl : l = 1,2, . . . ,L}
L = 1 X L = 3 X

X̃

Consider an observed image X with  pixels. It  is denoted
as ,  where .
When ,  represents a gray image. For ,  is a Red-
Green-Blue  color  image.  Since  there  is  noise  in  an  observed
image, X can  be  modeled  as  a  sum  of  a  noise-free  image 
and noise R:
 

X = X̃+R. (2)
X̃ = {x̃1, x̃2, . . . , x̃K}

X R = {r1, r2, . . . , rK}
X X̃

X̃ X

Mathematically  speaking,  is  an  ideal
value of  and thus is unknown.  is viewed
as the residual between  and .  Its  accurate estimation can
make  instead of  participate in clustering so as to improve
FCM’s robustness. Hence, it is a necessary step to formulate a
noise  model  before  constructing  an  FCM  model.  In  image
processing,  the  models  of  single  noise  such  as  Gaussian,
Poisson  and  impulse  noise  are  widely  used.  In  this  work,  in
order to construct  robust  FCM, we mostly consider mixed or
unknown  noise  since  it  is  often  encountered  in  real-world
applications.  Its  specific  model  is  unfortunately  hard  to  be
formulated.  Therefore,  a  common  solution  is  to  assume  the
type  of  mixed  noise  in  advance.  In  universal  image
processing,  two  kinds  of  mixed  noise  are  the  most  common,
namely  mixed  Poisson-Gaussian  noise  and  mixed  Gaussian
and impulse noise. Beyond them, we focus on a mixture of a
wide range of noise, i.e., a mixture of Poisson, Gaussian, and
impulse  noise.  We  investigate  an  FCM-related  model  based
on  the  analysis  of  the  mixed  noise  model  and  extend  it  to
image segmentation with mixed or unknown noise.

X̃
Ω = {1,2, . . . ,K}

X = {x̄1, x̄2, . . . , x̄K}
X ∼ P(X̃)

R′ = {r′1, r′2, . . . , r′K} σ

R′′ = {r′′j , r′′2 , . . . , r′′K}
p ∈ (0,1) j ∈Ω

X

Formally  speaking,  a  noise-free  image  is  defined  in  a
domain . It is first corrupted by Poisson noise,
thus  resulting  in  that  obeys  a  Poisson
distribution,  or, .  Then  additive  zero-mean  white
Gaussian noise  with standard deviation 
is  added.  Finally,  impulse  noise  with  a
given  probability  is  imposed.  Hence,  for ,  an
arbitrary element in observed image  is expressed as
 

x j =

{
x̄ j+ r′j, j ∈Ω1

r′′j , j ∈Ω2 := Ω\Ω1
(3)

Ω1
Ω2

X+R′

Ω p

where  is  called  an  observable  region  including  mixed
Poisson-Gaussian noise  and  denotes  the  region consisting
of  the  missing  information  of  and  is  assumed  to  be
unknown  with  each  element  being  drawn  from  the  whole
region  by  Bernoulli  trial  with .  In  image  segmentation,
mixed noise model (3) is for the first time presented. 

C.  Residual-driven FCM
Since  there  exists  an  unknown  noise  intensity  in  an

observed image, the segmentation accuracy of FCM is greatly
impacted  without  properly  handling  it.  It  is  natural  to
understand  that  taking  a  noise-free  image  (the  ideal  value  of
an observed image) as data to be clustered can achieve better
segmentation effects. In other words, if noise (residual) can be
accurately estimated, the segmentation effects of FCM should

be greatly improved.  To do so,  we introduce a  regularization
term  on  residual  into  the  objective  function  of  FCM.
Consequently, an RFCM framework is first presented
 

J(U,V,R) =
c∑

i=1

K∑
j=1

um
i j∥x j− r j− vi∥2+β ·Γ(R) (4)

β = {βl : l = 1,2, . . . ,L}
Γ(R)

R {Rl : l = 1,2, . . . ,L} Rl = (r1l,r2l, . . . ,rKl)T

R L
K L = 1 3

where  is  a  parameter  set,  which
controls the impact  of  regularization term  on FCM. We
rewrite  as  with ,
which  indicates  that  has  channels  and  each  of  them
contains  pixels.  In this work,  (gray) or  (red-green-
blue). From a channel perspective, we have
 

β ·Γ(R) =
L∑

l=1

βlΓ(Rl). (5)

Γ(R)
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The  regularization  term  guarantees  that  the  solution
accords  with  the  degradation  process  of  the  minimization  of
(4).  It  is  determined  by  a  specified  noise  distribution.  For
example, when considering the Gaussian noise estimation, we
use an -norm regularization term:
 

Γ(Rl) = ∥Rl∥2ℓ2 =
K∑

j=1

|r jl|2

∥ · ∥ℓ2 ℓ2 | · |

ℓ1

where  stands  for  an  vector  norm  and  denotes  an
absolute value operation. In the presence of the impulse noise,
we choose an -norm regularization term:
 

Γ(Rl) = ∥Rl∥ℓ1 =
K∑

j=1

|r jl|

∥ · ∥ℓ1 ℓ1
R X

where  denotes an  vector norm. For the Poisson noise,
we  take  the  Csiszár’s  I-divergence  [42]  of  from  as  a
regularization term, i.e.,
 

Γ(Rl) =
K∑

j=1

(
(x jl− r jl)− x jl ln(x jl− r jl)

)
.

For  a  common  single  noise,  i.e.,  Gaussian,  Poisson,  and
impulse  noise,  the  above  regularization  terms  lead  to  a
maximum  a  posteriori  (MAP)  solution  to  such  noise
estimation.  In  real-world  applications,  images  are  generally
contaminated by mixed or unknown noise rather than a single
noise.  The  regularization  terms  for  single  noise  estimation
become  inapplicable  since  the  distribution  of  mixed  or
unknown  noise  is  difficult  to  be  modeled  mathematically.
Therefore, one of this work’s purposes is to design a universal
regularization term for mixed or unknown noise estimation. 

D.  Analysis of Mixed Noise Distribution

σ = 10
σ = 10 p = 20%

512×512

To reveal the essence of mixed noise distributions, we here
consider  generic  and  representative  mixed  noise,  i.e.,  a
mixture of Poisson, Gaussian, and impulse noise.  Let us take
an  example  to  exhibit  its  distribution.  Here,  we  impose
Gaussian  noise  ( )  and  a  mixture  of  Poisson,  Gaussian
( )  and  random-valued  impulse  noise  ( )  on
image  Lena  with  size ,  respectively.  We  show
original and two observed images in Fig. 2.

As Fig. 2(b) shows, Gaussian noise is overall orderly. As a
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common  sense,  Poisson  distribution  is  a  Gaussian-like  one
under the condition of having enough samples. Therefore, due
to impulse noise, mixed noise is disordered and unsystematic
as shown in Fig. 2(c). In Fig. 3, we portray the distributions of
Gaussian and mixed noise, respectively.
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Fig. 2.     Noise-free image and two observed ones corrupted by Gaussian and
mixed noise, respectively. The first row: (a) noise-free image; (b) observed
image with Gaussian noise; and (c) observed image with mixed noise. The
second row portrays noise included in three images.
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Fig. 3.     Distributions of Gaussian and mixed noise in different domains.
(a) linear domain; and (b) logarithmic domain.
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R

Fig. 3(a) shows  noise  distribution  in  a  linear  domain.  To
intuitively illustrate a heavy tail, we present it in a logarithmic
domain as shown in Fig. 3(b). Clearly, Poisson noise leads to
a Gaussian-like distribution. Nevertheless, impulse noise gives
rise  to  a  more  irregular  distribution  with  a  heavy  tail.
Therefore,  neither  nor  norm  can  precisely  characterize
residual  in the sense of MAP estimation. 

ℓ2E.  Residual-driven FCM With Weighted -norm Regularization

ℓ2

Intuitively, if the regularization term can be modified so as
to make mixed noise distribution more Gaussian-like, we can
still  use  norm  to  characterize  residual R.  It  means  that
mixed noise can be more accurately estimated. Therefore, we
adopt  robust  estimation  techniques  [43],  [44]  to  weaken  the
heavy  tail,  which  makes  mixed  noise  distribution  more
regular.  In  the  sequel,  we  assign  a  proper  weight wjl to  each
residual rjl, which forms a weighted residual wjlrjl that almost
obeys  a  Gaussian  distribution.  Given Fig. 4,  we  use  an
example for showing the effect of weighting.

Fig. 4(a) shows  the  distribution  of rjl and  the  fitting
Gaussian function based on the variance of rjl. Fig. 4(b) gives
the  distribution  of wjlrjl and  the  fitting  Gaussian  function
based on the variance of wjlrjl. Clearly, the distribution of wjlrjl

ℓ2

in Fig. 4(b) is more Gaussian-like than that in Fig. 4(a), which
means  that -norm  regularization  can  work  on  weighted
residual wjlrjl for an MAP-like solution of R.

l = 1,2, . . . ,L
ℓ2

By  analyzing Fig. 4,  for ,  we  propose  a
weighted -norm regularization  term for  mixed  or  unknown
noise estimation:
 

Γ(Rl) = ∥Wl ◦Rl∥2ℓ2 =
K∑

j=1

|w jlr jl|2 (6)

◦
Rl = (r1l,r2l, . . . ,rKl)T Wl = (w1l,w2l, . . . ,wKl)T l = 1,
2, . . . ,L Wl W = [w jl]K×L

w jl ( j, l)
r jl

where  stands  for  an  element-by-element  multiplication  of
 and .  For 

,  makes  up  a  weight  matrix .  Each
element  is  assigned  to  location .  Since  it  is  inversely
proportional  to  residual ,  it  can  be  automatically
determined. In this work, we adopt the following expression:
 

w jl = e−ξr
2
jl (7)

ξ
w jl

where  is  a  positive  parameter,  which  aims  to  control  the
decreasing rate of .
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By substituting  (6)  into  (4)  combined  with  (5),  we  present
RFCM  with  weighted -norm  regularization  (WRFCM)  for
image segmentation:
 

J(U,V,R,W) =
c∑

i=1

K∑
j=1

um
i j∥x j− r j− vi∥2+

L∑
l=1

βl∥Wl ◦Rl∥2ℓ2

=

c∑
i=1

K∑
j=1

um
i j∥x j− r j− vi∥2+

L∑
l=1

βl

K∑
j=1

|w jlr jl|2.
(8)

When coping with image segmentation problems, since each
image  pixel  is  closely  related  to  its  neighbors,  using  spatial
information  has  a  positive  impact  on  FCM  as  shown  in  [9],
[34]. If there exists a small distance between a target pixel and
its  neighbors,  they  most  likely  belong  to  a  same  cluster.
Therefore,  we  introduce  spatial  information  into  (8),  thus
resulting in our final objective function:
 

J(U,V,R,W) =
c∑

i=1

K∑
j=1

um
i j

∑
n∈N j

∥xn− rn− vi∥2
1+dn j

+

L∑
l=1

βl

K∑
j=1

∑
n∈N j

|wnlrnl|2
1+dn j

. (9)

Its minimization is completed subject to
 

c∑
i=1

ui j = 1,∀ j ∈ {1,2, . . . ,K}

 

−2
−4
−6
−8

−2
−3
−4
−5
−6
−7
−8

−10
−12
−14

−200 −100 0 100 200

(a)

−30 −20 −10 0 10 20 30

(b)

L
o
g
ar

it
h
m

 o
f 

p
ro

b
ab

il
it

y

Noise gray value

L
o
g
ar

it
h
m

 o
f 

p
ro

b
ab

il
it

y

Noise gray value

Residual

Fitting Gaussian Fitting Gaussian

Weighted residual

 
r jl w jlr jlFig. 4.     Distributions of residual  and weighted residual , as well as

the fitting Gaussian function in the logarithmic domain.
 

WANG et al.: RESIDUAL-DRIVEN FUZZY C-MEANS CLUSTERING FOR IMAGE SEGMENTATION 879 



n j dn j
n j N j

j j |N j|

In  (9),  an  image pixel  is  sometimes  loosely  represented by
its  corresponding  index  even  though  this  is  not  ambiguous.
Thus,  is  a  neighbor  pixel  of  and  represents  the
Euclidean  distance  between  and .  stands  for  a  local
window centralized at  including  and its size is . 

F.  Minimization Algorithm
U V R

W W R

W U V R
R W

U V R
W W

Minimizing  (9)  involves  four  unknowns,  i.e., , ,  and
.  According  to  (7),  is  automatically  determined  by .

Hence,  we  can  design  a  two-step  iterative  algorithm  to
minimize (9),  which fixes  first  to solve ,  and ,  then
uses  to update . The main task in each iteration is to solve
the minimization problem in terms of ,  and  when fixing

.  Assume  that  is  given.  We  can  apply  a  Lagrangian
multiplier method to minimize (9). The Lagrangian function is
expressed as
 

LΛ(U,V,R;W) =
c∑

i=1

K∑
j=1

um
i j

∑
n∈N j

∥xn− rn− vi∥2
1+dn j


+

L∑
l=1

βl

K∑
j=1

∑
n∈N j

|wnlrnl|2
1+dn j

+

K∑
j=1

λ j

 c∑
i=1

ui j−1

 (10)

Λ = {λ j : j = 1,2, . . . ,K}where  is  a  set  of  Lagrangian
multipliers.  The  two-step  iterative  algorithm  for  minimizing
(9) is realized in Algorithm 1.

Algorithm 1: Two-step iterative algorithm

ε W(0) t = 0,1, . . .Given a threshold , input . For , iterate:
U(t+1) V(t+1) R(t+1)Step 1: Find minimizers , , and :

 (
U(t+1),V(t+1),R(t+1)

)
= arg min

U,V,R
LΛ(U,V,R;W(t)). (11)

W(t+1)Step 2: Update the weight matrix 
∥U(t+1) −U(t)∥ < ε tIf , stop; else update  such that

0 ≤ t ↑< +∞　　　　　　　　　  .
canThe  minimization  problem  (11)  be  divided  into  the

following three subproblems:
 

U(t+1) = argmin
U
LΛ(U,V(t),R(t);W(t))

V(t+1) = argmin
V
LΛ(U(t+1),V,R(t);W(t))

R(t+1) = argmin
R
LΛ(U(t+1),V(t+1),R;W(t)).

(12)

U V
U V

Each subproblem in (12) has a closed-form solution. We use
an alternative optimization scheme similar  to the one used in
FCM to optimize  and . The following result is needed to
obtain the iterative updates of  and .

Theorem 1: Consider the first two subproblems of (12). By
applying the Lagrangian multiplier method to solve them, the
iterative solutions are presented as
 

u(t+1)
i j =

∑
n∈N j

∥xn− r(t)
n − v(t)

i ∥2

1+dn j


−1

m−1

c∑
q=1

∑
n∈N j

∥xn− r(t)
n − v(t)

q ∥2

1+dn j


−1

m−1

(13)

 

v(t+1)
i =

K∑
j=1

(u(t+1)
i j

)m ∑
n∈N j

xn− r(t)
n

1+dn j


K∑

j=1

(u(t+1)
i j

)m ∑
n∈N j

1
1+dn j


. (14)

   Proof: See the Appendix ■
r j rn

rn r j
n

j j n
n ∈ N j j ∈ Nn

In  the  last  subproblem  of  (12),  both  and  appear
simultaneously.  Since  is  dependent  on ,  it  should not  be
considered  as  a  constant  vector.  In  other  words,  is  one  of
neighbors of  while  is one of neighbors of  symmetrically.
Thus,  is equivalent to . Then we have
 

K∑
j=1

um
i j


f (r j)+

∑
n ∈ N j

n , j

f (rn)


=

K∑
j=1

∑
n∈N j

um
in( f (r j)) (15)

f r j rnwhere  represents a function in terms of  or . By (15), we
rewrite (9) as
 

J(U,V,R,W) =
c∑

i=1

K∑
j=1

∑
n∈N j

um
in∥x j− r j− vi∥2

1+dn j

+

L∑
l=1

βl

K∑
j=1

∑
n∈N j

|w jlr jl|2

1+dn j
. (16)

W U V

K ×L

According  to  the  two-step  iterative  algorithm,  we  assume
that  in  (16)  is  fixed  in  advance.  When  and  are
updated,  the  last  subproblem of  (12)  is  separable  and  can  be
decomposed into  subproblems:
 

r(t+1)
jl =argmin

r jl

c∑
i=1

∑
n∈N j

(
u(t+1)

in

)m ∥x jl− r jl− v(t+1)
il ∥2

1+dn j


+

∑
n∈N j

βl|w(t)
jl r jl|2

1+dn j
. (17)

r jl

By  zeroing  the  gradient  of  the  energy  function  in  (17)  in
terms of , the iterative solution to (17) is expressed as
 

r(t+1)
jl =

c∑
i=1

∑
n∈N j

(
u(t+1)

in

)m (
x jl− v(t+1)

il

)
1+dn j

c∑
i=1

∑
n∈N j

(
u(t+1)

in

)m

1+dn j
+

∑
n∈N j

βl
(
w(t)

jl

)2

1+dn j

. (18)

ℓ2

σ = 30,
p = 20% c

ξ β

To quantify  the  impact  of  weighted -norm regularization
on FCM, we show an example, as shown in Fig. 5. We impose
a  mixture  of  Poisson,  Gaussian,  and  impulse  noise  (

)  on  a  noise-free  image  in Fig. 5(a).  We  set  to  4.
The settings of  and  are discussed in the later section.

As  shown  in Fig. 5,  the  noise  estimation  of  DSFCM_N  in
Fig. 5(g) is  far  from  the  true  one  in Fig. 5(f).  However,
WRFCM achieves a better noise estimation result as shown in
Fig. 5(h).  In  addition,  it  has  better  performance  for  noise-
suppression  and  feature-preserving  than  DSFCM_N,  which
can be visually observed from Figs. 5(c) and (d).
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∥U(t+1)−U(t)∥ < ε
U V X̂

Algorithm  1  is  terminated  when .  Based
on  optimal  and ,  a  segmented  image  is  obtained.
WRFCM for minimizing (9) is realized in Algorithm 2.

ℓ2Algorithm  2: Residual-driven  FCM  with  weighted -norm
regularization (WRFCM)

X m

c ε

Input: Observed  image ,  fuzzification  exponent ,  number  of
clusters , and threshold .

X̂Output: Segmented image .
W(0) 1

V(0)

1:  Initialize  as  a  matrix  with  all  elements  of  and  generate
randomly prototypes 

t← 02: 
3: repeat

U(t+1)4: Calculate the partition matrix  via (13)
V(t+1)5: Calculate the prototypes  via (14)

R(t+1)6: Calculate the residual  via (18)
W(t+1)7: Update the weight matrix  via (7)

t← t+18: 
∥U(t+1) −U(t)∥ < ε9: until 

U V R W10: return , ,  and 
X̂ U V11: Generate the segmented image  based on  and 

 

G.  Convergence and Robustness Analysis
∥U(t+1)−U(t)∥ < ε

ε = 1×10−8

θ = ∥U(t+1)−U(t)∥ J t
τ = ∥Rt+1− R̂∥

t R̂

In  WRFCM,  we  set  as  the  termination
condition. In order to analyze the convergence and robustness
of  WRFCM,  we  take Fig. 5 as  a  case  study.  We  set

. For convergence analysis, we draw the curves of
 and  versus  iteration  step ,  respectively.

For  robustness  analysis,  we draw the curve of 
versus  iteration  step ,  where  is  the  measured  residual
(noise) reserved in Fig. 5(b). The results are given in Fig. 6.

θ
J

θ τ

t
ℓ2

As Fig. 6(a) indicates,  since  the  prototypes  are  randomly
initialized,  WRFCM  oscillates  slightly  at  the  beginning.
Nevertheless,  it  reaches  steady  state  after  a  few  iterations.
Even  though  exhibits  some  oscillation,  the  objective
function  value  keeps  decreasing  until  the  iteration  stops.
Affected  by  the  oscillation  of ,  takes  on  a  pattern  of
increasing and then decreasing and eventually stabilizes.  The
finding  indicates  that  WRFCM  can  obtain  optimal  residual
estimation  as  increases.  To  sum  up,  WRFCM  has
outstanding  convergence  and  robustness  since  the  weight -

norm regularization makes mixed noise distribution estimated
accurately  so  that  the  residual  is  gradually  separated  from
observed data as iterations proceed. 

III.  Experimental Studies

In  this  section,  to  show  the  performance,  efficiency  and
robustness of WRFCM, we provide numerical experiments on
synthetic,  medical,  and other real-world images.  To highlight
the  superiority  and  improvement  of  WRFCM  over
conventional  FCM,  we  also  compare  it  with  seven  FCM
variants,  i.e.,  FCM_S1  [10],  FCM_S2  [10],  FLICM  [13],
KWFLICM [15], FRFCM [30], WFCM [22], and DSFCM_N
[34]. They are the most representative ones in the field. At the
last  of  this  section,  to  further  verify  WRFCM’s  strong
robustness,  we  compare  WRFCM  with  two  competing
approaches  unrelated  to  FCM,  i.e.,  PFE  [45]  and  AMR_SC
[46].  For  a  fair  comparison,  we note  that  all  experiments  are
implemented  in  Matlab  on  a  laptop  with  Intel(R)  Core(TM)
i5-8250U CPU of (1.60 GHz) and 8.0 GB RAM. 

A.  Evaluation Indicators
To quantitatively evaluate the performance of WRFCM, we

adopt  three objective evaluation indicators,  i.e.,  segmentation
accuracy  (SA)  [15],  Matthews  correlation  coefficient  (MCC)
[47], and Sorensen-Dice similarity (SDS) [48], [49]. Note that
a single one cannot fully reflect true segmentation results. SA
is defined as
 

S A =
c∑

i=1

|S i∩Gi|/K

S i Gi i
| · |

where  and  are the -th cluster in a segmented image and
its  ground  truth,  respectively.  denotes  the  cardinality  of  a
set. MCC is computed as
 

MCC =
TP ·TN −FP ·FN√

(TP+FP) · (TP+FN) · (TN +FP) · (TP+FN)
TP FP TN FNwhere , , ,  and  are  the  numbers  of  true  positive,

false  positive,  true  negative,  and  false  negative,  respectively.
SDS is formulated as
 

S DS =
2TP

2TP+FP+FN
.

 

B.  Dataset Descriptions
Tested  images  except  for  synthetic  ones  come  from  five

publicly available databases including a medical one and four
real-world ones. The details are outlined as follows:

1) BrianWeb: This  is  an  online  interface  to  a  3D  MRI
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Fig. 5.     Noise estimation comparison between DSFCM_N and WRFCM. (a)
noise-free  image;  (b)  observed  image;  (c)  segmented  image  of  DSFCM_N;
(d) segmented image of WRFCM; (e) noise in the noise-free image; (f) noise
in  the  observed  image;  (g)  noise  estimation  of  DSFCM_N;  and  (h)  noise
estimation of WRFCM.
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simulated brain database. The parameter settings are fixed to 3
modalities, 5 slice thicknesses, 6 levels of noise, and 3 levels
of  intensity  non-uniformity.  BrianWeb  provides  golden
standard segmentation.

321×481 481×
321

2) Berkeley Segmentation Data Set (BSDS) [50]: This  data-
base  contains  200  training,  100  validation  and  200  testing
images.  Golden  standard  segmentation  is  annotated  by
different  subjects  for  each  image  of  size  or 

.
3) Microsoft Research Cambridge Object Recognition Ima-

ge Database (MSRC): This database contains 591 images and
23 object classes. Golden standard segmentation is provided.

1440×720

4) NASA Earth Observation Database (NEO): This database
continually provides information collected by NASA satellites
about Earth’s ocean, atmosphere, and land surfaces. Due to bit
errors appearing in satellite measurements, sampled images of
size  contain  unknown  noise.  Thus,  their  ground
truths are unknown.

500×375
375×500

5) PASCAL Visual Object Classes 2012 (VOC2012): This
dataset contains 20 object classes. The training/validation data
has  11  530  images  containing  27  450  ROI  annotated  objects
and  6929  segmentations.  Each  image  is  of  size  or

. 

C.  Parameter Settings

ω = 3×3

|N j| = 3×3
m = 2 ε = 1×10−6

c

Prior  to  numerical  simulations,  we  report  the  parameter
settings  of  WRFCM  and  comparative  algorithms.  Since
AMR_SC  and  PFE  are  not  related  to  FCM,  we  follow  their
parameter  settings  introduced  in  their  original  articles  [45],
[46].  In  the  following,  we  focus  on  all  FCM-related
algorithms. Since spatial information is used in all algorithms,
a  filtering window of  size  is  selected for  FCM_S1,
FCM_S2,  KWFLICM,  FRFCM,  and  WFCM  and  a  local
window of size  is chosen for FLICM, KWFLICM,
DSFCM_N,  and  WRFCM.  We  set  and 
across  all  algorithms.  The  setting  of  is  presented  in  each
experiment.

m ε c

α

3×3
µ ∈ [0.55,

0.65]
λ

Except ,  and ,  FLICM and  KWFLICM are  free  of  all
parameters.  However,  the  remaining  algorithms  involve
different parameters. In FCM_S1 and FCM_S2,  is set to 3.8,
which  controls  the  impact  of  spatial  information  on  FCM by
following  [10].  In  FRFCM,  an  observed  image  is  taken  as  a
mask  image.  A  marker  image  is  produced  by  a 
structuring element. WFCM requires one parameter 

 only, which constrains the neighbor term. For DSFCM_N,
 is  set  based  on  the  standard  deviation  of  each  channel  of

image data.
ξ

β ξ

β

β = {βl : l = 1,2, . . . ,L}

As to WRFCM, it requires two parameters, i.e.,  in (7) and
 in  (9).  By  analyzing  mixed  noise  distributions,  is

experimentally  set  to  0.0008.  The  weighting  results  are
portrayed in Fig. 4. Since the standard deviation of image data
is related to noise levels to some extent [34], we can set  in
virtue  of  the  standard  deviation  of  each  channel.  Based  on
massive  experiments,  is  recommended
to be chosen as follows:
 

βl =
ϕ ·δl
100

for ϕ ∈ [5,10]

δl l X ϕwhere  is the standard deviation of the -th channel of . If 

βl β
ϕ ϕ

is  set,  is  computed.  Therefore,  is  equivalently  replaced
by . In Fig. 7, we cover an example to show the setting of 
associated with Fig. 8.
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Fig. 8.     Visual  results  for  segmenting  synthetic  images  (  and
). From (a1) to (j1) and from (a2) to (j2): noisy images, ground truth,

and results of FCM_S1, FCM_S2, FLICM, KWFLICM, FRFCM, WFCM,
DSFCM_N, and WRFCM.
 

ϕ

ϕ

As Fig. 7(a) indicates, when coping with the first image, the
SA  value  reaches  its  maximum  gradually  as  the  value  of 
increases.  Afterwards,  it  decreases  rapidly  and  tends  to  be
stable.  As shown in Fig. 7(b),  for the second image, after the
SA  value  reaches  its  maximum,  it  has  no  apparent  changes,
implying  that  the  segmentation  performance  is  rather  stable.
In conclusion, for image segmentation, WRFCM can produce
better and better performance as parameter  increases from a
small value. 

D.  Experimental Results and Analysis
We  show  the  comparison  results  between  WRFCM  and

seven  FCM-related  algorithms.  We  test  a  set  of  synthetic,
medical, and real-world images. They are borrowed from four
public datasets, i.e., BrainWeb, BSDS, MSRC, and NEO.

256×256

1) Results  on Synthetic Images: In the first  experiment,  we
representatively  choose  two  synthetic  images  of  size

.  A  mixture  of  Poisson,  Gaussian,  and  impulse
noises  is  considered  for  all  cases.  To  be  specific,  Poisson
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σ = 30
p = 20%

c = 4

noise is first added. Then we add Gaussian noise with .
Finally,  the  random-valued  impulse  noise  with  is
added since it  is  more difficult  to detect  than salt  and pepper
impulse  noise.  For  two  images,  we  set .  The
segmentation results are given in Fig. 8 and Table I. The best
values are in bold.
 

TABLE I  
Segmentation Performance (%) on Synthetic Images

Algorithm
First synthetic image Second synthetic image

SA SDS MCC SA SDS MCC

FCM_S1 92.902 98.187 96.362 92.625 98.414 95.528

FCM_S2 96.157 98.999 97.991 96.292 99.127 97.520

FLICM 85.081 90.145 95.082 85.667 95.894 88.576

KWFLICM 99.706 99.858 99.715 99.730 99.904 99.725

FRFCM 99.652 99.920 99.839 99.675 99.895 99.698

WFCM 97.827 99.325 98.652 98.079 99.363 98.197

DSFCM_N 98.954 99.545 99.086 99.226 99.757 99.303

WRFCM 99.859 99.937 99.843 99.802 99.958 99.792
 
 

As Fig. 8 indicates, FCM_S1, FCM_S2 and FLICM achieve
poor  results  in  presence of  such a  high level  of  mixed noise.
Compared  with  them,  KWFLICM,  FRFCM  and  WFCM
suppress  the  vast  majority  of  mixed  noise.  Yet  they  cannot
completely  remove it.  DSFCM_N visually  outperforms other
peers  mentioned  above.  However,  it  generates  several
topology changes such as merging and splitting. By taking the
second  synthetic  image  as  a  case,  we  find  that  DSFCM_N
produces  some  unclear  contours  and  shadows.  Superiorly  to
seven peers, WRFCM not only removes all the noise but also
preserves more image features.

Table I shows  the  segmentation  results  of  all  algorithms
quantitatively.  It  assembles  the  values  of  all  three  indictors.
Clearly, WRFCM achieves better SA, SDS, and MCC results
for  all  images  than  other  peers.  In  particular,  its  SA  value
comes up to 99.859% for the first synthetic image. Among its
seven  peers,  KWFLICM  obtains  generally  better  results.  In
the  light  of Fig. 8 and Table I,  we  conclude  that  WRFCM
performs better than its peers.

c = 4

2)  Results  on  Medical  Images: Next,  we  representatively
segment  two  medical  images  from  BrianWeb.  They  are
represented  as  two  slices  in  the  axial  plane  with  70  and  80,
which  are  generated  by  T1  modality  with  slice  thickness  of
1mm resolution, 9% noise and 20% intensity non-uniformity.
Here,  we  set  for  all  cases.  The  comparisons  between
WRFCM and its  peers  are  shown in Fig. 9 and Table II.  The
best values are in bold.

By  viewing  the  marked  red  squares  in Fig. 9,  we  find  that
FCM_S1, FCM_S2, FLICM, KWFLICM and DSFCM_N are
vulnerable  to  noise  and  intensity  non-uniformity.  They  give
rise to the change of topological shapes to some extent. Unlike
them,  FRFCM and  WFCM achieve  sufficient  noise  removal.
However,  they  produce  overly  smooth  contours.  Compared
with  its  seven  peers,  WRFCM  can  not  only  suppress  noise
adequately  but  also  acquire  accurate  contours.  Moreover,  it
yields the visual result closer to ground truth than its peers. As
Table II shows, WRFCM obtains optimal SA, SDS and MCC

results for all medical images. As a conclusion, it outperforms
its peers visually and quantitatively.

c = 2

3)  Results  on  Real-world  Images: In  order  to  demonstrate
the practicality of WRFCM for other image segmentation, we
typically  choose  two  sets  of  real-world  images  in  the  last
experiment.  The  first  set  contains  five  representative  images
from  BSDS  and  MSRC.  There  usually  exist  some  outliers,
noise or intensity inhomogeneity in each image. For all tested
images,  we set .  The results of all  algorithms are shown
in Fig. 10 and Table III.

Fig. 10 visually  shows  the  comparison  between  WRFCM
and  seven  peers  while Table III gives  the  quantitative
comparison.  Apparently,  WRFCM  achieves  better  segment-
ation  results  than  its  peers.  FCM_S1,  FCM_S2,  FLICM,
KWFLICM  and  DSFCM_N  obtain  unsatisfactory  results  on
all  tested  images.  Superiorly  to  them,  FRFCM  and  WFCM

 

(a1) (b1) (c1) (d1) (e1)

(f1) (g1) (h1) (i1) (j1)

(a2) (b2) (c2) (d2) (e2)

(f2) (g2) (h2) (i2) (j2)
 

ϕ = 5.35Fig. 9.     Visual results for segmenting medical images ( ). From (a1)
to  (j1)  and  from  (a2)  to  (j2):  noisy  images,  ground  truth,  and  results  of
FCM_S1, FCM_S2, FLICM, KWFLICM, FRFCM, WFCM, DSFCM_N, and
WRFCM.
 

 

TABLE II  
Segmentation Performance (%) on Medical Images in

Brianweb

Algorithm
First medical image Second medical image

SA SDS MCC SA SDS MCC

FCM_S1 75.756 97.852 96.225 75.026 98.109 96.656

FCM_S2 75.769 98.119 96.664 74.970 98.176 96.765

FLICM 74.998 98.070 96.568 74.185 98.122 96.660

KWFLICM 74.840 98.259 96.878 73.839 97.860 96.190

FRFCM 75.853 97.620 95.775 75.514 97.660 95.830

WFCM 75.507 97.124 94.957 74.471 97.213 95.045

DSFCM_N 76.400 92.325 86.262 75.288 91.574 85.095

WRFCM 82.317 98.966 98.147 82.141 98.298 96.970
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preserve  more  contours  and  feature  details.  From  a
quantitative  point  of  view,  WRFCM  acquires  optimal  SA,
SDS, and MCC values much more than its peers. Note that it
merely  gets  a  slightly  smaller  SDS  value  than  FRFCM  and
WFCM for the first and second images, respectively.

The second set contains images from NEO. Here, we select
two typical images. Each of them represents an example for a
specific scene. We produce the ground truth of each scene by
randomly  shooting  it  for  50  times  within  the  time  span
2000–2019. The visual  results  of  all  algorithms are shown in
Figs. 11 and 12.  The  corresponding  SA,  SDS,  and  MCC
values are given in Table IV.

Fig. 11 shows the segmentation results on sea ice and snow
extent.  The  colors  represent  the  land  and  ocean  covered  by

c = 4

c = 2

snow and ice per week (here is February 7–14, 2015). We set
. Fig. 12 gives  the  segmentation  results  on  chlorophyll

concentration.  The  colors  represent  where  and  how  much
phytoplankton  is  growing  over  a  span  of  days.  We  choose

.  As  a  whole,  by  seeing Figs. 11 and 12,  as  well  as
Table IV,  FCM_S1,  FCM_S2,  FLICM,  KWFLICM,  and
WFCM  are  sensitive  to  unknown  noise.  FRFCM  and
DSFCM_N  produce  overly  smooth  results.  Especially,  they
generate incorrect clusters when segmenting the first image in

 

TABLE III  
Segmentation Performance (%) on Real-world Images in BSDS and MSRC

Algorithm
Fig. 10 Column 1 Fig. 10 Column 2 Fig. 10 Column 3 Fig. 10 Column 4 Fig. 10 Column 5

SA SDS MCC SA SDS MCC SA SDS MCC SA SDS MCC SA SDS MCC

FCM_S1 86.384 89.687 69.705 50.997 66.045 2.724 67.289 72.570 32.232 80.688 88.159 49.369 78.717 47.696 48.874

FCM_S2 86.138 79.701 69.208 51.433 12.089 2.951 67.105 59.523 31.941 80.657 47.557 49.256 78.365 86.449 47.881

FLICM 86.476 89.771 69.882 55.292 70.055 2.403 89.233 91.167 78.117 80.771 47.826 49.729 80.617 54.490 54.029

KWFLICM 87.119 90.278 71.283 48.252 63.432 1.554 64.617 66.081 30.820 80.484 46.723 48.777 77.963 44.791 46.755

FRFCM 97.701 98.235 94.941 99.690 97.436 97.273 99.380 99.467 98.732 83.974 89.927 58.683 96.985 97.861 92.987

WFCM 98.442 97.755 96.563 99.688 99.834 97.268 99.295 99.160 98.555 84.480 62.664 60.043 96.445 93.943 91.719

DSFCM_N 93.116 90.279 84.987 50.688 11.093 0.638 92.101 90.791 83.922 50.858 60.181 0.506 95.412 92.319 89.179

WRFCM 98.732 98.162 97.201 99.746 97.906 97.771 99.442 99.520 98.857 99.826 99.888 99.074 99.869 99.789 99.694
 

 

 

ϕ1 = 6.05 ϕ2 = 10.00 ϕ3 = 9.89 ϕ4 = 9.98 ϕ5 = 9.50
Fig. 10.     Segmentation  results  on  five  real-world  images  in  BSDS  and
MSRC ( , , , , and ). From top
to bottom: observed images, ground truth, and results of FCM_S1, FCM_S2,
FLICM, KWFLICM, FRFCM, WFCM, DSFCM_N, and WRFCM.
 

 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
 

ϕ = 6.10
Fig. 11.     Segmentation  results  on  the  first  real-world  image  in  NEO
( ). From (a) to (i): observed image and results of FCM_S1, FCM_S2,
FLICM, KWFLICM, FRFCM, WFCM, DSFCM_N, and WRFCM.
 

 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
 

ϕ = 9.98
Fig. 12.     Segmentation  results  on  the  second  real-world  image  in  NEO
( ). From (a) to (i): observed image and results of FCM_S1, FCM_S2,
FLICM, KWFLICM, FRFCM, WFCM, DSFCM_N, and WRFCM.
 

 884 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021



NEO.  Superiorly  to  its  seven  peers,  WRFCM  cannot  only
suppress  unknown  noise  well  but  also  retain  image  contours
well.  In  particular,  it  makes  up  the  shortcoming  that  other
peers  forge  several  topology  changes  in  the  form  of  black
patches when coping with the second image in NEO.

4) Performance Improvement: Besides segmentation results
reported  for  all  algorithms,  we  also  present  the  performance
improvement of WRFCM over seven comparative algorithms
in Table V.  Clearly,  for  all  types  of  images,  the  average  SA,
SDS  and  MCC  improvements  of  WRFCM  over  other  peers
are within the value span 0.113%–27.836%, 0.040%–41.989%,
and 0.049%–58.681%, respectively.
 

TABLE V  
Average Performance Improvements (%) of WRFCM over

Comparative Algorithms

Algorithm
Synthetic images Medical images

SA SDS MCC SA SDS MCC

FCM_S1 7.067 1.647 3.873 6.838 0.651 1.118

FCM_S2 3.606 0.884 2.062 6.859 0.484 0.844

FLICM 14.456 6.928 7.989 7.637 0.536 0.945

KWFLICM 0.113 0.067 0.098 7.889 0.572 1.024

FRFCM 0.167 0.040 0.049 6.545 0.992 1.756

WFCM 1.878 0.603 1.393 7.240 1.463 2.558

DSFCM_N 0.741 0.297 0.623 6.385 6.682 11.880

Algorithm
Real-world images in BSDS

and MSRC
Real-world images

in NEO
SA SDS MCC SA SDS MCC

FCM_S1 26.708 26.221 57.938 13.841 4.148 5.329

FCM_S2 26.783 41.989 58.271 11.553 4.078 5.254

FLICM 21.045 28.391 47.687 13.073 4.269 5.038

KWFLICM 27.836 36.791 58.681 8.529 10.736 12.066

FRFCM 3.977 2.468 9.996 10.137 10.010 10.829

WFCM 3.853 8.381 9.690 2.369 0.831 0.811

DSFCM_N 23.088 30.120 46.673 10.596 9.196 10.030
 
 

5)  Overhead  Analysis: In  the  previous  subsections,  the
segmentation performance of WRFCM is presented. Next, we
provide  the  comparison  of  computing  overheads  between
WRFCM and seven comparative algorithms in order to show

K
c t ω

|N j|
j µ
µ≪ K

O(K)

its practicality. We note that  is the number of image pixels,
 is  the  number  of  prototypes,  is  the  iteration  count, 

represents the size of a filtering window,  denotes the size
of a local window centralized at pixel , and  is the number
of  pixel  levels  in  an  image.  Generally, .  Generally
speaking, since FCM-related algorithms are unsupervised and
their  solutions  are  easily  updated  iteratively,  they  have  low
storage complexities  of .  In  addition,  we summarize the
computational complexity of all algorithms in Table VI.
 

TABLE VI  
Computational Complexity of All Algorithms

Algorithm Computational complexity

FCM_S1 O(K ×ω+K × c× t)

FCM_S2 O(K ×ω+K × c× t)

FLICM O(K × c× t× |N j |)

KWFLICM O(K × (
√
ω+1)2 +K × c× t× |N j |)

FRFCM O(K ×ω+µ× c× t)

WFCM O(K ×ω+9×K × log K +K × c× t)

DSFCM_N O(K × c× t× |N j |)
WRFCM O(K × c× t× |N j |)

 
 

µ≪ K
O(K)

As Table VI shows,  FRFCM  has  lower  computational
complexity  than  its  peers  since .  Except  WFCM,  the
complexity of  other  algorithms is  basically ,  and that  of
WRFCM  is  not  high.  To  compare  the  practicability  between
WRFCM  and  its  peers,  we  present  the  execution  time  of  all
algorithms  for  segmenting  synthetic,  medical,  and  real-world
images in Table VII.
 

TABLE VII  
Comparison of Execution Time (in Seconds) of All

Algorithms

Algorithm Fig. 8
(Average)

Fig. 9
(Average)

Fig. 10
(Average) Fig. 11 Fig. 12

FCM_S1 4.284 3.971 5.075 5.535 4.644

FCM_S2 3.674 3.362 5.346 5.288 4.182

FLICM 50.879 96.709 278.694 224.195 40.727

KWFLICM 67.838 128.946 371.592 298.926 54.303

FRFCM 0.263 0.247 1.162 5.815 1.786

WFCM 3.772 2.685 5.419 6.644 7.104

DSFCM_N 7.758 5.786 8.987 36.648 18.897

WRFCM 6.455 2.819 4.893 4.977 2.761
 
 

As Table VII shows, for gray and color image segmentation,
the computational efficiencies of FLICM and KWFLICM are
far  lower  than  those  of  others.  In  contrast,  since  gray  level
histograms  are  considered,  FRFCM takes  the  least  execution
time  among  all  algorithms.  Due  to  the  computation  of  a
neighbor  term  in  advance,  FCM_S1  and  FCM_S2  are  more
time-saving  than  most  of  other  algorithms.  Even  though
WFCM and DSFCM_N need more computing overheads than
FRFCM,  they  are  still  very  efficient.  For  color  image
segmentation,  the  execution  time  of  DSFCM_N  increases
dramatically.  Compared  with  most  of  seven  comparative
algorithms,  WRFCM shows  higher  computational  efficiency.
In most cases, it only runs slower than FRFCM. However, the

 

TABLE IV  
Segmentation Performance (%) on Real-world

Images in NEO

Algorithm
Fig. 11 Fig. 12

SA SDS MCC SA SDS MCC

FCM_S1 90.065 97.060 95.106 80.214 92.590 90.329

FCM_S2 93.801 97.723 95.563 81.054 92.066 90.023

FLICM 90.234 97.056 95.781 81.582 92.352 90.236

KWFLICM 85.902 80.109 76.329 95.001 96.364 95.633

FRFCM 81.319 80.616 78.220 96.369 97.309 96.215

WFCM 95.882 98.854 97.293 97.342 97.430 97.178

DSFCM_N 80.131 81.618 79.597 96.639 97.936 96.436

WRFCM 99.080 99.149 98.512 98.881 98.797 97.582
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shortcoming  can  be  offset  by  its  better  segmentation
performance.  In  a  quantitative  study,  for  each  image,
WRFCM takes 0.011 s and 2.642 s longer than FCM_S2 and
FRFCM,  respectively.  However,  it  saves  0.321  s,  133.860  s,
179.940  s,  0.744  s,  and  11.234  s  over  FCM_S1,  FLICM,
KWFLICM, FRFCM, WFCM, and DSFCM_N, respectively. 

E.  Comparison With Non-FCM Methods
We  compare  WRFCM  with  two  non-FCM  methods,  i.e.,

PFE [45]  and  AMR_SC [46].  We list  the  comparison  results
on VOC2012 in Fig. 13 and Table VIII. The computing times
of the WRFCM, AMR_SC, and PFE are summarized in Table IX.
The  results  indicate  that  WRFCM  achieves  better  effectiv-
eness and efficiency than AMR_SC and PFE.
 

 

ϕ1 = 5.65 ϕ2 = 6.75 ϕ3 = 5.50 ϕ4 = 8.35

Fig. 13.     Segmentation  results  on  four  real-world  images  in  VOC2012
( ,  ,  ,  ).  From top to bottom: observed
images, ground truth, and results of AMR_SC, PFE, and WRFCM.

 
TABLE VIII  

Segmentation Performance (%) on Real-world
Images in VOC2012

Algorithm
Fig. 13 Column 1 Fig. 13 Column 2

SA SDS MCC SA SDS MCC

AMR_SC 90.561 90.259 84.867 89.216 90.060 92.849

PFE 95.992 95.211 94.826 96.077 97.748 95.513

WRFCM 98.946 98.651 97.353 97.167 98.848 96.072

Algorithm
Fig. 13 Column 3 Fig. 13 Column 4

SA SDS MCC SA SDS MCC

AMR_SC 85.095 88.615 80.878 91.148 92.414 90.156

PFE 90.358 94.516 90.923 93.273 94.950 93.743

WRFCM 92.756 96.132 93.330 95.436 96.869 97.012

 
TABLE IX  

Comparison of Execution Time (in Seconds)

Algorithm Fig. 13
Column 1

Fig. 13
Column 2

Fig. 13
Column 3

Fig. 13
Column 4

AMR_SC 6.639 6.819 6.901 7.223

PFE 206.025 234.796 217.801 238.473

WRFCM 5.509 6.097 5.425 5.828
 

IV.  Conclusions and Future Work

ℓ2

For the first time, a residual-driven Fuzzy C-Means (RFCM)
framework  is  proposed  for  image  segmentation,  which
advances FCM research. It realizes favorable noise estimation
in virtue of a residual-related regularization term coming with
an  analysis  of  noise  distribution.  On  the  basis  of  the
framework,  RFCM  with  weighted -norm  regularization
(WRFCM)  is  presented  for  coping  with  image  segmentation
with  mixed  or  unknown  noise.  Spatial  information  is  also
considered  in  WRFCM  for  making  residual  estimation  more
reliable.  A  two-step  iterative  algorithm  is  presented  to
implement  WRFCM.  Experimental  results  reported  for  four
benchmark  databases  show that  it  outperforms existing  FCM
and  non-FCM  methods.  Moreover,  differing  from  residual-
learning  methods,  it  is  unsupervised  and  exhibits  high  speed
clustering.

There  are  some  open  issues  worth  pursuing.  First,  since  a
tight  wavelet  frame  transform  [51]–[53]  provides  redundant
representations  of  images,  it  can  be  used  to  manipulate  and
analyze  image  features  and  noise  well.  Therefore,  it  can  be
taken as a kernel function so as to produce an improved FCM
algorithm, i.e., wavelet kernel-based FCM. Second, can the pro-
posed algorithm be applied to  a  wide range of  non-flat  dom-
ains  such  as  remote  sensing  [54],  ecological  systems  [55],
feature recalibration network [56], and 3D images [57]? How
can  the  number  of  clusters  be  selected  automatically?  Can
more recently proposed minimization algorithms [58]–[61] be
applied  to  the  optimization  problem  involved  in  this  work?
Answering them needs more efforts. 

APPENDIX
Proof of Theorem 1

Proof: Consider  the  first  two  subproblems  of  (12).  The
Lagrangian function (10) is reformulated as
 

LΛ(U,V) =
c∑

i=1

K∑
j=1

um
i jDi j+

K∑
j=1

λ j

 c∑
i=1

ui j−1

 (19)

Di j =
∑

n∈N j

∥xn− rn− vi∥2
1+dn j

where .

V U
U

By fixing ,  we  minimize  (19)  in  terms  of .  By  zeroing
the gradient of (19) in terms of , one has
 

∂Lλ
∂ui j
= mDi jum−1

i j +λ j = 0.

ui jThus,  is expressed as
 

ui j =

(−λ j

m

) 1
m−1

D
−1

m−1
i j . (20)∑c

i=1 ui j = 1Due to the constraint , one has
 

1 =
c∑

q=1

uq j =

c∑
q=1

(−λ j

m

) 1
m−1

D
−1

m−1
q j


=

(−λ j

m

) 1
m−1 c∑

q=1

D
−1

m−1
q j .
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In the sequel, one can get
 (−λ j

m

) 1
m−1

=
1
c∑

q=1

D
−1

m−1
q j . (21)

ui jSubstituting (21) into (20), the optimal  is acquired:
 

ui j =
D
−1

m−1
i j

c∑
q=1

D
−1

m−1
q j

.

U V
V

By fixing ,  we  minimize  (19)  in  terms  of .  By  zeroing
the gradient of (19) in terms of , one has
 

∂Lλ
∂vi
= −2 ·

K∑
j=1

um
i j

∑
n∈N j

xn− rn− vi

1+dn j

 = 0.

The intermediate process is presented as
 

K∑
j=1

um
i j

∑
n∈N j

xn− rn

1+dn j

 = K∑
j=1

um
i j

∑
n∈N j

vi

1+dn j

 .
viThe optimal  is computed:

 

vi =

K∑
j=1

um
i j

∑
n∈N j

xn− rn

1+dn j


K∑

j=1

um
i j

∑
n∈N j

1
1+dn j


.

■

References
 A. Baraldi and P. Blonda, “A survey of fuzzy clustering algorithms for
pattern  recognition.  I,” IEEE Trans. Syst. Man Cybern. Part B Cybern.,
vol. 29, no. 6, pp. 778–785, Dec. 1999.

[1]

 A. Baraldi and P. Blonda, “A survey of fuzzy clustering algorithms for
pattern recognition. II,” IEEE Trans. Syst. Man Cybern. Part B Cybern.,
vol. 29, no. 6, pp. 786–801, Dec. 1999.

[2]

 C.  Subbalakshmi,  G.  Ramakrishna,  and  S.  K.  M.  Rao, “Evaluation  of
data mining strategies using fuzzy clustering in dynamic environment,”
in Proc.  3rd  Int.  Conf.  Advanced  Computing,  Networking  and
Informatics, New Delhi, 2016, pp. 529−536.

[3]

 X. B. Zhu, W. Pedrycz, and Z. W. Li, “Granular encoders and decoders:
A  study  in  processing  information  granules,” IEEE Trans. Fuzzy Syst.,
vol. 25, no. 5, pp. 1115–1126, Oct. 2017.

[4]

 M.  Yambal  and  H.  Gupta, “Image  segmentation  using  fuzzy c means
clustering: A survey,” Int.  J.  Adv. Res.  Comput.  Commun. Eng.,  vol. 2,
no. 7, pp. 2927–2929, Jul. 2013.

[5]

 J.  C.  Dunn, “A fuzzy  relative  of  the  ISODATA process  and  its  use  in
detecting  compact  well-separated  clusters,” J. Cybernet.,  vol. 3,  no. 3,
pp. 32–57, Sep. 1973.

[6]

 J.  C.  Bezdek, Pattern  Recognition  with  Fuzzy  Objective  Function
Algorithms. Boston, MA: Springer, 1981.

[7]

 J.  C.  Bezdek,  R.  Ehrlich,  and  W.  Full, “FCM:  The  fuzzy C-means
clustering  algorithm,” Comput. Geosci.,  vol. 10,  no. 2–3,  pp. 191–203,
Dec. 1984.

[8]

 M.  N.  Ahmed,  S.  M.  Yamany,  N.  Mohamed,  A.  A.  Farag,  and  T.
Moriarty, “A  modified  fuzzy C-means  algorithm  for  bias  field
estimation  and  segmentation  of  MRI  data,” IEEE Trans. Med. Imag.,
vol. 21, no. 3, pp. 193–199, Mar. 2002.

[9]

 S. C. Chen and D. Q. Zhang, “Robust image segmentation using FCM[10]

with spatial constraints based on new kernel-induced distance measure,”
IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 34, no. 4, pp. 1907–
1916, Aug. 2004.
 L.  Szilagyi,  Z.  Benyo,  S.  M.  Szilagyi,  and  H.  S.  Adam, “MR  brain
image  segmentation  using  an  enhanced  fuzzy C-means  algorithm,” in
Proc. 25th Annu. Int. Conf. IEEE Engineering in Medicine and Biology
Society, Cancun, Mexico, 2003, pp. 724−726.

[11]

 W.  L.  Cai,  S.  C.  Chen,  and  D.  Q.  Zhang, “Fast  and  robust  fuzzy c-
means  clustering  algorithms  incorporating  local  information  for  image
segmentation,” Pattern Recognit.,  vol. 40,  no. 3,  pp. 825–838,  Mar.
2007.

[12]

 S. Krinidis and V. Chatzis, “A robust fuzzy local information C-means
clustering  algorithm,” IEEE Trans. Image Process.,  vol. 19,  no. 5,
pp. 1328–1337, May 2010.

[13]

 T.  Celik  and  H.  K.  Lee, “Comments  on “A  robust  fuzzy  local
information C-means  clustering  algorithm,” IEEE Trans. Image
Process., vol. 22, no. 3, pp. 1258–1261, Mar. 2013.

[14]

 M. G. Gong, Y. Liang, J. Shi, W. P. Ma, and J. J. Ma, “Fuzzy C-means
clustering  with  local  information  and  kernel  metric  for  image
segmentation,” IEEE Trans. Image Process., vol. 22, no. 2, pp. 573–584,
Feb. 2013.

[15]

 K.  P.  Lin, “A  novel  evolutionary  kernel  intuitionistic  fuzzy C-means
clustering  algorithm,” IEEE Trans. Fuzzy Syst.,  vol. 22,  no. 5,
pp. 1074–1087, Oct. 2014.

[16]

 A. Elazab,  C.  M.  Wang,  F.  C.  Jia,  J.  H.  Wu,  G.  L.  Li,  and Q.  M.  Hu,
“Segmentation  of  brain  tissues  from magnetic  resonance  images  using
adaptively  regularized  kernel-based  fuzzy C-means  clustering,”
Comput.  Math.  Methods  Med.,  vol. 2015,  Article  No.  485495,  Dec.
2015.

[17]

 F. Zhao, L. C. Jiao, and H. Q. Liu, “Kernel generalized fuzzy C-means
clustering  with  spatial  information  for  image  segmentation,” Digit.
Signal Process., vol. 23, no. 1, pp. 184–199, Jan. 2013.

[18]

 F.  F.  Guo,  X.  X.  Wang,  and  J.  Shen, “Adaptive  fuzzy C-means
algorithm based on local noise detecting for image segmentation,” IET
Image Process., vol. 10, no. 4, pp. 272–279, Apr. 2016.

[19]

 Z. X. Zhao, L. Z. Cheng, and G. Q. Cheng, “Neighbourhood weighted
fuzzy C-means  clustering  algorithm  for  image  segmentation,” IET
Image Process., vol. 8, no. 3, pp. 150–161, Mar. 2014.

[20]

 X.  B.  Zhu,  W.  Pedrycz,  and  Z.  W.  Li, “Fuzzy  clustering  with
nonlinearly transformed data,” Appl. Soft Comput., vol. 61, pp. 364–376,
Dec. 2017.

[21]

 C. Wang, W. Pedrycz, J. B. Yang, M. C. Zhou, and Z. W. Li, “Wavelet
frame-based  fuzzy C-means  clustering  for  segmenting  images  on
graphs,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3938–3949, Sep. 2020.

[22]

 R. R. Gharieb, G. Gendy, A. Abdelfattah, and H. Selim, “Adaptive local
data  and  membership  based  KL  divergence  incorporating C-means
algorithm  for  fuzzy  image  segmentation,” Appl. Soft Comput.,  vol. 59,
pp. 143–152, Oct. 2017.

[23]

 C.  Wang,  W.  Pedrycz,  Z.  W.  Li,  and  M.  C.  Zhou,  Kullback-Leibler
divergence-based  fuzzy C-means  clustering  incorporating
morphological  reconstruction  and  wavelet  frames  for  image
segmentation. 2020. [Online]. Available: arXiv: 2002.09479

[24]

 J.  Gu,  L.  C.  Jiao,  S.  Y.  Yang,  and  F.  Liu, “Fuzzy  double C-means
clustering based on sparse self-representation,” IEEE Trans. Fuzzy Syst.,
vol. 26, no. 2, pp. 612–626, Apr. 2018.

[25]

 C.  Wang,  W.  Pedrycz,  M.  C.  Zhou,  and  Z.  W.  Li, “Sparse
regularization-based  fuzzy C-means  clustering  incorporating
morphological  grayscale  reconstruction  and  wavelet  frames,” IEEE
Trans. Fuzzy Syst., DOI: 10.1109/TFUZZ.2020.2985930.

[26]

 L. Vincent, “Morphological grayscale reconstruction in image analysis:
Applications  and  efficient  algorithms,” IEEE Trans. Image Process.,
vol. 2, no. 2, pp. 176–201, Apr. 1993.

[27]

 L.  Najman  and  M.  Schmitt, “Geodesic  saliency  of  watershed  contours
and  hierarchical  segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 18, no. 12, pp. 1163–1173, Dec. 1996.

[28]

 J.  J.  Chen,  C.  R.  Su,  W.  E.  L.  Grimson,  J.  L.  Liu,  and  D.  H.  Shiue,
“Object  segmentation  of  database  images  by  dual  multiscale
morphological  reconstructions  and  retrieval  applications,” IEEE Trans.

[29]

WANG et al.: RESIDUAL-DRIVEN FUZZY C-MEANS CLUSTERING FOR IMAGE SEGMENTATION 887 

http://dx.doi.org/10.1109/3477.809032
http://dx.doi.org/10.1109/3477.809033
http://dx.doi.org/10.1109/TFUZZ.2016.2598366
http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.1016/0098-3004(84)90020-7
http://dx.doi.org/10.1109/42.996338
http://dx.doi.org/10.1109/TSMCB.2004.831165
http://dx.doi.org/10.1016/j.patcog.2006.07.011
http://dx.doi.org/10.1109/TIP.2010.2040763
http://dx.doi.org/10.1109/TIP.2012.2226048
http://dx.doi.org/10.1109/TIP.2012.2226048
http://dx.doi.org/10.1109/TIP.2012.2219547
http://dx.doi.org/10.1109/TFUZZ.2013.2280141
http://dx.doi.org/10.1016/j.dsp.2012.09.016
http://dx.doi.org/10.1016/j.dsp.2012.09.016
http://dx.doi.org/10.1049/iet-ipr.2015.0236
http://dx.doi.org/10.1049/iet-ipr.2015.0236
http://dx.doi.org/10.1049/iet-ipr.2011.0128
http://dx.doi.org/10.1049/iet-ipr.2011.0128
http://dx.doi.org/10.1016/j.asoc.2017.07.026
http://dx.doi.org/10.1109/TCYB.2019.2921779
http://dx.doi.org/10.1016/j.asoc.2017.05.055
http://dx.doi.org/10.1109/TFUZZ.2017.2686804
 10.1109/TFUZZ.2020.2985930
 10.1109/TFUZZ.2020.2985930
 10.1109/TFUZZ.2020.2985930
 10.1109/TFUZZ.2020.2985930
http://dx.doi.org/10.1109/83.217222
http://dx.doi.org/10.1109/34.546254
http://dx.doi.org/10.1109/34.546254
http://dx.doi.org/10.1109/TIP.2011.2166558
http://dx.doi.org/10.1109/3477.809032
http://dx.doi.org/10.1109/3477.809033
http://dx.doi.org/10.1109/TFUZZ.2016.2598366
http://dx.doi.org/10.1080/01969727308546046
http://dx.doi.org/10.1016/0098-3004(84)90020-7
http://dx.doi.org/10.1109/42.996338
http://dx.doi.org/10.1109/TSMCB.2004.831165
http://dx.doi.org/10.1016/j.patcog.2006.07.011
http://dx.doi.org/10.1109/TIP.2010.2040763
http://dx.doi.org/10.1109/TIP.2012.2226048
http://dx.doi.org/10.1109/TIP.2012.2226048
http://dx.doi.org/10.1109/TIP.2012.2219547
http://dx.doi.org/10.1109/TFUZZ.2013.2280141
http://dx.doi.org/10.1016/j.dsp.2012.09.016
http://dx.doi.org/10.1016/j.dsp.2012.09.016
http://dx.doi.org/10.1049/iet-ipr.2015.0236
http://dx.doi.org/10.1049/iet-ipr.2015.0236
http://dx.doi.org/10.1049/iet-ipr.2011.0128
http://dx.doi.org/10.1049/iet-ipr.2011.0128
http://dx.doi.org/10.1016/j.asoc.2017.07.026
http://dx.doi.org/10.1109/TCYB.2019.2921779
http://dx.doi.org/10.1016/j.asoc.2017.05.055
http://dx.doi.org/10.1109/TFUZZ.2017.2686804
 10.1109/TFUZZ.2020.2985930
 10.1109/TFUZZ.2020.2985930
 10.1109/TFUZZ.2020.2985930
 10.1109/TFUZZ.2020.2985930
http://dx.doi.org/10.1109/83.217222
http://dx.doi.org/10.1109/34.546254
http://dx.doi.org/10.1109/34.546254
http://dx.doi.org/10.1109/TIP.2011.2166558


Image Process., vol. 21, no. 2, pp. 828–843, Feb. 2012.
 T. Lei, X. H. Jia, Y. N. Zhang, L. F. He, H. Y. Meng, and A. K. Nandi,
“Significantly fast and robust fuzzy C-means clustering algorithm based
on  morphological  reconstruction  and  membership  filtering,” IEEE
Trans. Fuzzy Syst., vol. 26, no. 5, pp. 3027–3041, Oct. 2018.

[30]

 T. Lei,  P.  Liu,  X. H. Jia,  X. D. Zhang,  H. Y. Meng, and A. K. Nandi,
“Automatic fuzzy clustering framework for image segmentation,” IEEE
Trans. Fuzzy Syst., vol. 28, no. 9, pp. 2078–2092, Sep. 2020.

[31]

 C. Wang,  W. Pedrycz,  Z.  W. Li,  M.  C.  Zhou,  and J.  Zhao, “Residual-
sparse  fuzzy C-means  clustering  incorporating  morphological
reconstruction  and  wavelet  frame,” IEEE  Trans.  Fuzzy  Syst.,  DOI:
10.1109/TFUZZ.2020.3029296.

[32]

 X. Z. Bai, Y. X. Zhang, H. N. Liu, and Z. G. Chen, “Similarity measure-
based  possibilistic  FCM  with  label  information  for  brain  MRI
segmentation,” IEEE Trans. Cybern.,  vol. 49,  no. 7,  pp. 2618–2630,  Jul.
2019.

[33]

 Y. X. Zhang, X. Z. Bai, R. R. Fan, and Z. H. Wang, “Deviation-sparse
fuzzy C-means  with  neighbor  information  constraint,” IEEE Trans.
Fuzzy Syst., vol. 27, no. 1, pp. 185–199, Jan. 2019.

[34]

 A. Fakhry,  T.  Zeng, and S.  W. Ji, “Residual deconvolutional  networks
for  brain  electron  microscopy  image  segmentation,” IEEE Trans. Med.
Imag., vol. 36, no. 2, pp. 447–456, Feb. 2017.

[35]

 K. Zhang, W. M. Zuo, Y. J. Chen, D. Y. Meng, and L. Zhang, “Beyond
a  Gaussian  denoiser:  Residual  learning  of  deep  CNN  for  image
denoising,” IEEE Trans. Image Process.,  vol. 26,  no. 7,  pp. 3142–3155,
Jul. 2017.

[36]

 F.  Kokkinos  and  S.  Lefkimmiatis, “Iterative  residual  CNNs  for  burst
photography applications,” in Proc.  IEEE/CVF Conf.  Computer Vision
and Pattern Recognition, Long Beach, CA, USA, 2019, pp. 5922−5931.

[37]

 D.  W.  Ren,  W.  M.  Zuo,  D.  Zhang,  L.  Zhang,  and  M.  H.  Yang,
“Simultaneous  fidelity  and  regularization  learning  for  image
restoration,” IEEE  Trans.  Pattern  Anal.  Mach.  Intell.,  DOI：
10.1109/TPAMI.2019.2926357.

[38]

 Y.  Zhang,  X.  R.  Li,  M.  Q.  Lin,  B.  Chiu,  and  M.  B.  Zhao, “Deep-
recursive  residual  network  for  image  semantic  segmentation,” Neural
Comput. Appl., vol. 32, no. 16, pp. 12935–12947, Jan. 2020.

[39]

 J. L. Jiang, L. Zhang, and J. Yang, “Mixed noise removal by weighted
encoding  with  sparse  nonlocal  regularization,” IEEE Trans. Image
Process., vol. 23, no. 6, pp. 2651–2662, Jun. 2014.

[40]

 P.  Zhou,  C.  Y.  Lu,  J.  S.  Feng,  Z.  C.  Lin and S.  C.  Yan, “Tensor  low-
rank  representation  for  data  recovery  and  clustering,” IEEE  Trans.
Pattern Anal. Mach. Intell., DOI: 10.1109/TPAMI.2019.2954874.

[41]

 T.  Le,  R.  Chartrand,  and  T.  J.  Asaki, “A  variational  approach  to
reconstructing images corrupted by Poisson noise,” J. Math. Imag. Vis.,
vol. 27, no. 3, pp. 257–263, Apr. 2007.

[42]

 P.  J.  Huber, “Robust  regression:  Asymptotics,  conjectures  and  Monte
Carlo,” Ann. Stat., vol. 1, no. 5, pp. 799–821, Sep. 1973.

[43]

 P. J. Huber, Robust Statistics. New York: Wiley, 1981.[44]
 C.  W.  Fang,  Z.  C.  Liao,  and  Y.  Z.  Yu, “Piecewise  flat  embedding  for
image  segmentation,” IEEE Trans. Pattern Anal. Mach. Intell.,  vol. 41,
no. 6, pp. 1470–1485, Jun. 2019.

[45]

 T. Lei,  X.  H.  Jia,  T.  L.  Liu,  S.  G.  Liu,  H.  Y.  Meng,  and A.  K.  Nandi,
“Adaptive  morphological  reconstruction  for  seeded  image
segmentation,” IEEE Trans. Image Process.,  vol. 28,  no. 11,  pp. 5510–
5523, Nov. 2019.

[46]

 D.  N.  H.  Thanh,  D.  Sergey,  V.  B.  S.  Prasath,  and  N.  H.  Hai, “Blood
vessels  segmentation  method  for  retinal  fundus  images  based  on
adaptive principal curvature and image derivative operators,” Int. Arch.
Photogramm. Remote Sens. Spatial Inf. Sci.,  vol. XLII-2/W12,  pp. 211–
218, May 2019.

[47]

 D. N. H. Thanh, U. Erkan, V. B. S. Prasath, V. Kumar, and N. N. Hien,
“A skin lesion segmentation method for  dermoscopic images based on
adaptive thresholding with normalization of color models,” in Proc. 6th
Int.  Conf.  Electrical  and  Electronics  Engineering,  Istanbul,  Turkey,
2019, pp. 116−120.

[48]

 A. A. Taha and A. Hanbury, “Metrics for evaluating 3D medical image
segmentation: Analysis, selection, and tool,” BMC Med. Imag., vol. 15,
Article number: 29, Aug. 2015.

[49]

 P. Arbeláez, M. Maire, C. Fowlkes and J. Malik, “Contour detection and
hierarchical  image  segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[50]

 C. Wang and J.  B. Yang, “Poisson noise removal of images on graphs
using  tight  wavelet  frames,” Vis. Comput.,  vol. 34,  no. 10,
pp. 1357–1369, Oct. 2018.

[51]

 J.  B.  Yang  and  C.  Wang, “A  wavelet  frame  approach  for  removal  of
mixed  Gaussian  and  impulse  noise  on  surfaces,” Inverse Probl. Imag.,
vol. 11, no. 5, pp. 783–798, Oct. 2017.

[52]

 C.  Wang,  Z.  Y.  Yan,  W.  Pedrycz,  M.  C.  Zhou,  and  Z.  W.  Li, “A
weighted  fidelity  and  regularization-based  method  for  mixed  or
unknown  noise  removal  from  images  on  graphs,” IEEE Trans. Image
Process., vol. 29, pp. 5229–5243, Feb. 2020.

[53]

 T. Xu, L. C. Jiao, and W. J. Emery, “SAR image content retrieval based
on  fuzzy  similarity  and  relevance  feedback,” IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens., vol. 10, no. 5, pp. 1824–1842, May 2017.

[54]

 C.  Wang,  J.  X.  Chen,  Z.  W.  Li,  E.  S.  A.  Nasr,  and  A.  M.  El-Tamimi,
“An  indicator  system  for  evaluating  the  development  of  land-sea
coordination systems: A case study of Lianyungang port,” Ecol. Indic.,
vol. 98, pp. 112–120, Mar. 2019.

[55]

 Z.  Cao,  X.  Xu,  B.  Hu,  M.  Zhou,  and  Q.  Li, “Real-time  gesture
recognition  based  on  feature  recalibration  network  with  multi-scale
information,” Neurocomputing, vol. 347, pp. 119–130, Jun. 2019.

[56]

 C. Wang, W. Pedrycz,  Z.  W. Li,  M. C. Zhou,  and S.  S.  Ge, “G-image
segmentation:  Similarity-preserving  fuzzy C-means  with  spatial
information constraint in wavelet space,” IEEE Trans. Fuzzy Syst., DOI:
10.1109/TFUZZ.2020.3029285.

[57]

 X.  Luo,  M.  C.  Zhou,  Z.  D.  Wang,  Y.  N.  Xia,  and  Q.  S.  Zhu, “An
effective  scheme  for  QoS  estimation  via  alternating  direction  method-
based  matrix  factorization,” IEEE Trans. Serv. Comput.,  vol. 12,  no. 4,
pp. 503–518, Jul.–Aug. 2019.

[58]

 X.  Luo,  M.  C.  Zhou,  Y.  N.  Xia,  Q.  S.  Zhu,  A.  C.  Ammari,  and  A.
Alabdulwahab, “Generating  highly  accurate  predictions  for  missing
QoS  data  via  aggregating  nonnegative  latent  factor  models,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 27, no. 3, pp. 524–537, Mar. 2016.

[59]

 X. Luo, H. Wu, H. Q. Yuan, and M. C. Zhou, “Temporal pattern-aware
QoS prediction via  biased non-negative  latent  factorization of  tensors,”
IEEE Trans. Cybern., vol. 50, no. 5, pp. 1798–1809, May 2020.

[60]

 S.  C.  Gao,  M.  C.  Zhou,  Y.  R.  Wang,  J.  J.  Cheng,  H.  Yachi,  and J.  H.
Wang, “Dendritic  neuron  model  with  effective  learning  algorithms  for
classification,  approximation,  and  prediction,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 30, no. 2, pp. 601–614, Feb. 2019.

[61]

Cong Wang received the B.S. degree in automation
and  the  M.S.  degree  in  mathematics  from  Hohai
University,  China,  in  2014  and  2017,  respectively.
He  is  currently  pursuing  the  Ph.D.  degree  in
mechatronic  engineering,  Xidian  University,  China.
He  was  a  Visiting  Ph.D.  Student  in  the  Department
of  Electrical  and  Computer  Engineering,  University
of  Alberta,  Edmonton,  AB,  Canada.  He  was  a
Research  Assistant  at  the  School  of  Computer
Science  and  Engineering,  Nanyang  Technological

University,  Singapore.  He  is  currently  a  Visiting  Ph.D.  Student  in  the
Department  of  Electrical  and  Computer  Engineering,  National  University  of
Singapore, Singapore. His current research interests include wavelet analysis
and its applications, granular computing, as well as image processing.

Witold  Pedrycz (M’88–SM’90–F’99)  received  the
MS.c.  degree  in  computer  science  and  technology,
the  Ph.D.  degree  in  computer  engineering,  and  the
D.Sci.  degree  in  systems  science  from  the  Silesian
University of Technology, Gliwice, Poland, in 1977,
1980,  and  1984,  respectively.  He  is  a  Professor  and
the  Canada  Research  Chair  in  Computational
Intelligence  with  the  Department  of  Electrical  and
Computer  Engineering,  University  of  Alberta,
Edmonton, AB, Canada. He is also with the Systems

Research Institute of the Polish Academy of Sciences, Warsaw, Poland. He is
a  foreign  member  of  the  Polish  Academy  of  Sciences.  He  has  authored  15

 888 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 4, APRIL 2021

http://dx.doi.org/10.1109/TIP.2011.2166558
http://dx.doi.org/10.1109/TFUZZ.2018.2796074
http://dx.doi.org/10.1109/TFUZZ.2018.2796074
http://dx.doi.org/10.1109/TFUZZ.2019.2930030
http://dx.doi.org/10.1109/TFUZZ.2019.2930030
10.1109/TFUZZ.2020.3029296
http://dx.doi.org/10.1109/TCYB.2018.2830977
http://dx.doi.org/10.1109/TFUZZ.2018.2883033
http://dx.doi.org/10.1109/TFUZZ.2018.2883033
http://dx.doi.org/10.1109/TMI.2016.2613019
http://dx.doi.org/10.1109/TMI.2016.2613019
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1007/s00521-020-04738-5
http://dx.doi.org/10.1007/s00521-020-04738-5
http://dx.doi.org/10.1109/TIP.2014.2317985
http://dx.doi.org/10.1109/TIP.2014.2317985
http://dx.doi.org/10.1007/s10851-007-0652-y
http://dx.doi.org/10.1214/aos/1176342503
http://dx.doi.org/10.1109/TPAMI.2018.2839733
http://dx.doi.org/10.1109/TIP.2019.2920514
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W12-211-2019
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W12-211-2019
http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1007/s00371-017-1418-1
http://dx.doi.org/10.3934/ipi.2017037
http://dx.doi.org/10.1109/TIP.2020.2969076
http://dx.doi.org/10.1109/TIP.2020.2969076
http://dx.doi.org/10.1109/JSTARS.2017.2664119
http://dx.doi.org/10.1109/JSTARS.2017.2664119
http://dx.doi.org/10.1016/j.ecolind.2018.10.057
http://dx.doi.org/10.1109/JAS.2017.7510316
10.1109/TFUZZ.2020.3029285
http://dx.doi.org/10.1109/TSC.2016.2597829
http://dx.doi.org/10.1109/TNNLS.2015.2412037
http://dx.doi.org/10.1109/TNNLS.2015.2412037
http://dx.doi.org/10.1109/TCYB.2019.2903736
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1109/TIP.2011.2166558
http://dx.doi.org/10.1109/TFUZZ.2018.2796074
http://dx.doi.org/10.1109/TFUZZ.2018.2796074
http://dx.doi.org/10.1109/TFUZZ.2019.2930030
http://dx.doi.org/10.1109/TFUZZ.2019.2930030
10.1109/TFUZZ.2020.3029296
http://dx.doi.org/10.1109/TCYB.2018.2830977
http://dx.doi.org/10.1109/TFUZZ.2018.2883033
http://dx.doi.org/10.1109/TFUZZ.2018.2883033
http://dx.doi.org/10.1109/TMI.2016.2613019
http://dx.doi.org/10.1109/TMI.2016.2613019
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1007/s00521-020-04738-5
http://dx.doi.org/10.1007/s00521-020-04738-5
http://dx.doi.org/10.1109/TIP.2014.2317985
http://dx.doi.org/10.1109/TIP.2014.2317985
http://dx.doi.org/10.1007/s10851-007-0652-y
http://dx.doi.org/10.1214/aos/1176342503
http://dx.doi.org/10.1109/TPAMI.2018.2839733
http://dx.doi.org/10.1109/TIP.2019.2920514
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W12-211-2019
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W12-211-2019
http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1109/TPAMI.2010.161
http://dx.doi.org/10.1007/s00371-017-1418-1
http://dx.doi.org/10.3934/ipi.2017037
http://dx.doi.org/10.1109/TIP.2020.2969076
http://dx.doi.org/10.1109/TIP.2020.2969076
http://dx.doi.org/10.1109/JSTARS.2017.2664119
http://dx.doi.org/10.1109/JSTARS.2017.2664119
http://dx.doi.org/10.1016/j.ecolind.2018.10.057
http://dx.doi.org/10.1109/JAS.2017.7510316
10.1109/TFUZZ.2020.3029285
http://dx.doi.org/10.1109/TSC.2016.2597829
http://dx.doi.org/10.1109/TNNLS.2015.2412037
http://dx.doi.org/10.1109/TNNLS.2015.2412037
http://dx.doi.org/10.1109/TCYB.2019.2903736
http://dx.doi.org/10.1109/TNNLS.2018.2846646
http://dx.doi.org/10.1109/TNNLS.2018.2846646


research monographs covering various aspects of computational intelligence,
data mining, and software engineering. His current research interests include
computational  intelligence,  fuzzy  modeling,  and  granular  computing,
knowledge  discovery  and  data  mining,  fuzzy  control,  pattern  recognition,
knowledge-based  neural  networks,  relational  computing,  and  software
engineering.  He  has  published  numerous  papers  in  the  above  areas.  Dr.
Pedrycz  was  a  recipient  of  the  IEEE  Canada  Computer  Engineering  Medal,
the  Cajastur  Prize  for  Soft  Computing  from  the  European  Centre  for  Soft
Computing,  the  Killam  Prize,  and  the  Fuzzy  Pioneer  Award  from  the  IEEE
Computational  Intelligence  Society.  He  is  intensively  involved  in  editorial
activities.  He  is  an  Editor-in-Chief  of Information  Sciences,  an  Editor-in-
Chief  of WIREs  Data  Mining  and  Knowledge  Discovery (Wiley)  and  the
International Journal of Granular Computing (Springer). He currently serves
as  a  member  of  a  number  of  editorial  boards  of  other  international  journals.
He is a Fellow of the Royal Society of Canada.

ZhiWu  Li (M’06–SM’07–F’16)  received  the  B.S.
degree in mechanical engineering, the M.S. degree in
automatic  control,  and  the  Ph.D.  degree  in
manufacturing  engineering  from  Xidian  University,
Xi’an, China, in 1989, 1992, and 1995, respectively.
He  joined  Xidian  University  in  1992.  He  is  also
currently  with  the  Institute  of  Systems  Engineering,
Macau  University  of  Science  and  Technology,
Macau, China. He was a Visiting Professor with the
University  of  Toronto,  Toronto,  ON,  Canada,  the

Technion-Israel  Institute  of  Technology,  Haifa,  Israel,  the  Martin-Luther
University of Halle-Wittenburg, Halle, Germany, Conservatoire National des
Arts  et  Métiers,  Paris,  France,  and  Meliksah  Universitesi,  Kayseri,  Turkey.
His  current  research  interests  include  Petri  net  theory  and  application,
supervisory  control  of  discrete-event  systems,  system  reconfiguration,  game
theory, and data and process mining. Dr. Li was a recipient of an Alexander
von  Humboldt  Research  Grant,  Alexander  von  Humboldt  Foundation,
Germany.  He  is  listed  in  Marquis  Who’s  Who  in  the  World,  27th  Edition,
2010.  He  serves  as  a  Frequent  Reviewer  of  90+  international  journals,
including Automatica and a number of the IEEE Transactions as well as many

international conferences. He is the Founding Chair of Xi’an Chapter of IEEE
Systems,  Man,  and  Cybernetics  Society.  He  is  a  member  of  Discrete-Event
Systems  Technical  Committee  of  the  IEEE  Systems,  Man,  and  Cybernetics
Society  and  IFAC  Technical  Committee  on  Discrete-Event  and  Hybrid
Systems, from 2011 to 2014.

MengChu  Zhou (S’88–M’90–SM’93–F’03)
received the B.S. degree in control engineering from
Nanjing  University  of  Science  and  Technology,
Nanjing,  China  in  1983,  M.S.  degree  in  automatic
control  from  Beijing  Institute  of  Technology,
Beijing,  China  in  1986,  and  Ph.D.  degree  in
computer  and  systems  engineering  from  Rensselaer
Polytechnic  Institute,  Troy,  NY,  USA  in  1990.  He
joined  New  Jersey  Institute  of  Technology  (NJIT),
Newark,  NJ,  in  1990,  and  is  now  a  Distinguished

Professor of  Electrical  and Computer  Engineering.  His research interests  are
in Petri nets, intelligent automation, Internet of Things, big data, web services,
and intelligent transportation.
     He  has  over  900  publications  including  12  books,  600+  journal  papers
(450+  in IEEE  Transactions,  26  patents  and  29  book-chapters.  He  is  the
founding  Editor  of  IEEE  Press  Book  Series  on  Systems  Science  and
Engineering, Editor-in-Chief of IEEE/CAA Journal of Automatica Sinica, and
Associate  Editor  of IEEE Internet  of  Things  Journal, IEEE Transactions  on
Intelligent Transportation Systems, and IEEE Transactions on Systems, Man,
and Cybernetics: Systems. He is a recipient of Humboldt Research Award for
US Senior Scientists from Alexander von Humboldt Foundation, Franklin V.
Taylor Memorial Award and the Norbert Wiener Award from IEEE Systems,
Man and Cybernetics Society, Excellence in Research Prize and Medal from
NJIT and Edison Patent Award from the Research & Development Council of
New  Jersey.  He  is  a  life  member  of  Chinese  Association  for  Science  and
Technology-USA  and  served  as  its  President  in  1999.  He  is  a  Fellow  of
International Federation of Automatic Control (IFAC), American Association
for  the  Advancement  of  Science  (AAAS)  and  Chinese  Association  of
Automation (CAA).

WANG et al.: RESIDUAL-DRIVEN FUZZY C-MEANS CLUSTERING FOR IMAGE SEGMENTATION 889 


	I Introduction
	II FCM and Proposed Methodology
	A Fuzzy C-Means (FCM)
	B Noise Model
	C Residual-driven FCM
	D Analysis of Mixed Noise Distribution
	E Residual-driven FCM With Weighted $ \ell_{2} $-norm Regularization
	F Minimization Algorithm
	G Convergence and Robustness Analysis

	III Experimental Studies
	A Evaluation Indicators
	B Dataset Descriptions
	C Parameter Settings
	D Experimental Results and Analysis
	E Comparison With Non-FCM Methods

	IV Conclusions and Future Work
	APPENDIXProof of Theorem 1

