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Abstract—G-images refer to image data defined on irregular
graph domains. This article elaborates on a similarity-preserving
Fuzzy C-Means (FCM) algorithm for G-image segmentation and
aims to develop techniques and tools for segmenting G-images. To
preserve the membership similarity between an arbitrary image
pixel and its neighbors, a Kullback–Leibler divergence term on par-
tition matrix is introduced as a part of FCM. As a result, similarity-
preserving FCM is developed by considering spatial information of
image pixels for its robustness enhancement. Due to superior char-
acteristics of a wavelet space, the proposed FCM is performed in
this space rather than the Euclidean one used in conventional FCM
to secure its high robustness. Experiments on synthetic and real-
world G-images demonstrate that it indeed achieves higher robust-
ness and performance than the state-of-the-art segmentation algo-
rithms. Moreover, it requires less computation than most of them.

Index Terms—Fuzzy C-Means (FCM), G-image segmentation,
similarity-preserving, spatial information, wavelet space.

I. INTRODUCTION

C LASSIC image segmentation involves an analysis or ma-
nipulation of image data defined in regular Euclidean
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domains [1]. In recent years, with rapid advances in information
and computer technology, image data defined in irregular do-
mains including complex topologies have received much atten-
tion [2]–[4]. Graphs positioned in high-dimensional spaces offer
a capacity to model such data and complex interactions among
them [5]. They can be represented by randomly discretizing or
sampling from smooth Riemannian manifolds [6], [7]. They are
composed of vertices and (possibly weighted) edges connecting
vertices. Generally speaking, a graph can model a network
represented by its internal vertices.

Let us assume for now that an image defined on a graph
can be modeled as a real-valued function residing on vertices.
It can be simply referred to a G-image. It can be represented
through various interacting objects, such as colors, labels, and
coordinates. In addition, as a classic two-dimensional image,
it stems from various domains. However, unlike a 2-D image,
the underlying graph tells a fair amount about it through a
graph structure. In conclusion, G-images extend the universe
of discourse of classical image processing. In other words, the
scope of investigation on image processing is extended from
Euclidean domains to graph ones. Due to the nonlinear nature of
graphs, it is challenging to design efficient computing methods
for manipulating and processing G-images.

Although a G-image is a new term proposed for the first
time, prior to this work, researchers have made some encour-
aging attempts to solve image processing problems defined on
graphs [8]–[11]. For instance, Hammond et al. [8] construct
wavelets on graphs via spectral graph theory and apply them
to a variety of scenarios. Dong [9] reports a fast discrete tight
wavelet frame transform defined on graphs and investigates
some practical problems via it, such as graph denoising and
graph clustering. Wang and Yang [10] come up with a weighted
variational model for Poisson noise removal from images de-
fined on graphs. More recently, Wang et al. [11] present a
universal method for removing mixed or unknown noise from
images on graphs. It is modeled by a weighted fidelity term and a
regularization term of using a discrete wavelet frame transform
on graphs to detect image feature details.

Inspired by the work mentioned above, in this article, we focus
on developing techniques and tools for segmenting G-images.
The field that gathers this issue under a common umbrella is
G-image segmentation. Specifically, it aims to segment images
defined on irregular domains or high-dimensional spaces. To do
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Fig. 1. Proposed framework for G-image segmentation.

so, it is an important task to extend classical image segmentation
concepts and methods such as clustering [12], [13], watershed
transform [14], graph cut [15], neural networks [16], and active
contour modeling [17] to G-image segmentation.

In this article, we discuss how to improve fuzzy clustering
methods and then apply them to G-image segmentation. As a
commonly studied fuzzy clustering method, Fuzzy C-Means
(FCM) plays a significant role in classical image segmenta-
tion [13]. Yet, it is not robust to noise. To improve robustness,
two main means are often used, i.e., considering spatial infor-
mation in it [18]–[23] and substituting its Euclidean distance
with a kernel distance (function) [24]–[28]. As a result, a large
number of its modified versions have been put forward [18]–
[28]. Although they make evident efforts on FCM’s robustness
enhancement, they often suffer from high computing overhead of
clustering. To maintain a good balance between performance and
efficiency, some researchers have recently attempted to develop
FCM by virtue of various techniques such as Kullback–Leibler
(KL) divergence [29]–[31], sparse regularization [32]–[34], gray
level histograms [35], morphological reconstruction [36], and
image superpixel [37], thus resulting in some comprehensive
FCM algorithms [30]–[37]. Even though many studies have
been reported, there exists no deep discussion of optimizing a
membership partition by preserving the membership similarity
between an arbitrary image pixel and its neighbors.

In addition, in our earlier work [38], for the first time, we
attempt to apply FCM to segment images defined on graph
domains. However, the term “G-image” has never been coined.
In [38], we propose wavelet-frame-based FCM (WFCM) with
spatial information constraint. We expand FCM’s application
fields instead of developing its mathematical theory. In addition,
we fail to exploit the full use of spatial information to advance
FCM. Therefore, despite its sound significance, WFCM’s seg-
mentation performance remains to be improved.

Motivated by [38], we propose an improved FCM variant
for G-image segmentation, which realizes the optimization of a
partition matrix and fast clustering. Its framework is illustrated
in Fig. 1.

Since a tight wavelet frame transform provides redundant
representations of images [9], [10], [39]–[41], image features
can be revealed in a wavelet space. As Fig. 1 shows, we em-
ploy tight wavelet frame decomposition to form a feature set
associated with an observed G-image. Taking such set as data

to be clustered, we augment FCM by introducing spatial infor-
mation and a KL divergence term on a partition matrix, thus
resulting in similarity-preserving FCM with spatial information
constraint (SFCM). Spatial information is innovatively used to
improve FCM’s robustness to noise and optimize data distribu-
tion. KL divergence is used to preserve the membership simi-
larity between an arbitrary pixel and its neighbors. Based on a
partition matrix and prototypes obtained by SFCM, a segmented
G-image is reconstructed via tight wavelet frame reconstruction.

This article makes threefold contributions.
1) It presents SFCM by virtue of spatial information and

KL divergence. It is fast and robust FCM that realizes
similarity preservation and noise suppression.

2) It performs SFCM in a wavelet space produced by using
a tight wavelet frame transform. Such space provides the
superior analysis and manipulation of image details over
nonrobust Euclidean one that is used in conventional FCM
and causes an undesired robustness issue.

3) We apply SFCM to graph domains over Euclidean ones.
Due to the nonlinear nature of graphs, SFCM offers a new
avenue for G-image segmentation.

The originality of this article is to propose a fast and robust
FCM algorithm for G-image segmentation, which preserves
membership similarity between pixels and their neighbors in
a wavelet space. To be specific, we make full use of spatial
information in a graph structure, which can not only improve
FCM’s robustness but also make clustered data more reliable
and applicable. In essence, the proposed FCM is a kernel-based
FCM algorithm by treating wavelet frame transforms as a kernel
function. In the kernel space, G-image features can be well
found and analyzed. We preserve partition matrix similarity
via KL divergence. Note that using KL divergence may bring
more computing overheads. However, due to the positive effect
of spatial information on optimizing data distributions, this
shortcoming can be well offset.

The rest of this article is organized as follows. Section II
briefly describes some preliminaries relevant to this work. Sec-
tion III formulates the proposed methodology. Section IV il-
lustrates experimental results. Finally, Section V concludes this
article.

II. PRELIMINARIES

In this section, we briefly introduce three basic concepts
involved in this work, i.e., spectral graph theory, tight wavelet
frame transform, and FCM. Interested readers can find more
details in [9], [38], and [42].

A. Spectral Graph Theory

A weighted graph G = (V ,E, ω) defined in a domain Ω =
{1, 2, . . . ,K} is composed of a vertex set V = {vi : i ∈ Ω}
collecting (x, y, z)-coordinates of K vertices, an edge set E =
{(vi,vj) : i, j ∈ Ω and i �= j}, and a weight functionω : E �→
R+ that assigns a positive weight ωij to each edge (vi,vj) [9]

ωij = exp(−‖vi − vj‖2/ρ) (1)
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Fig. 2. Illustration of G and g.

where ρ is a positive parameter and ‖ · ‖ denotes the Euclidean
distance between vi and vj . Since G is undirected, we have
ωij = ωji.
G’s adjacency matrix is denoted as A = [aij ]K×K with

aij =

{
ωij , if vi and vj are connected
0, otherwise

.

G’s degree matrix is expressed as D = diag{di =
∑

j aij :
i, j ∈ Ω}, where di represents the degree of vertex vi. Its
Laplacian matrix can be defined as

L = D −A.

K pairs of eigenvalues and eigenvectors of L are denoted as
{(λi, ei) : i ∈ Ω}. Since L is symmetric and positive semidef-
inite, we have λK ≥ · · · ≥ λi ≥ · · · ≥ λ2 > λ1 = 0.

We define a real-valued function on G as g : V �→ R. It can
be modeled as a collection of discrete data, i.e., {g(vi) ∈ [0, 1] :
i ∈ Ω}. To make it easily understandable, we take an example
“bunny” to intuitively portray it, as shown in Fig. 2.

B. Tight Wavelet Frame Transform on Graph

Given is a graph G = (V ,E, ω) and a function g : V �→ R
defined on it. Next, we briefly introduce a tight wavelet frame
transform of g. In a concise way, for i ∈ Ω, g(vi) ∈ g is rewrit-
ten as g[i]. The Fourier transform of g is denoted as ĝ with the
elements

ĝ[i] =

K∑
j=1

g[j]eij

where eij is the jth element of ei.
Given a finite set of masks {hb : 0 ≤ b ≤ B}, their Fourier

series are denoted as {ĥb}. ĥ∗b stands for the complex conjugate
of ĥb. The L-level wavelet frame decomposition is defined as

Wg := {Wb,lg : (b, l) ∈ B}
with

B := {(1, 1), (2, 1), . . . , (B, 1), (1, 2), . . . , (B,L)} ∪ {(0,L)}
where W is a decomposition operator. In a Fourier domain, it
can be expressed as

̂Wb,lg[i] =

⎧⎪⎨⎪⎩
ĥ∗b (2

−sλi) ĝ[i] l = 1

ĥ∗b
(
2−s+l−1λi

)
ĥ∗0
(
2−s+l−2λi

)
· · · ĥ∗0 (2−sλi) ĝ[i] 2 ≤ l ≤ L

(2)

where s is the dilation scale being the smallest integer such that
λK ≤ 2sπ.

Let R := Wg := {Rb,l, (b, l) ∈ B} with Rb,l :=Wb,lg be
the tight wavelet frame coefficients of g. For l = L,L−
1, . . . , 1}, the wavelet frame reconstruction WTR is defined
by the following iterative procedure in a frequency domain:

R̂0,l−1[i] :=
∑
b

ĥb(2
−s+l−1λi)R̂b,l[i] (3)

where R0,0 = WTR is the reconstructed data from R and
WT is a reconstruction operator. As [9, Theorem 3.1] indicates,
WTW = I is obtained, where I is an identity matrix, thus
implying that a tight wavelet frame transform can realize the
accurate reconstruction of data.

As (2) and (3) show, all eigenvalues {λi : i ∈ Ω} of the graph
Laplacian matrix L are needed. However, they are hard to be
computed since the size of L is large. To address this issue,
the masks {hb} are accurately approximated by low-degree
Chebyshev polynomials [43] since their Fourier series {ĥb}
are trigonometric polynomials [9]. In this case, it is not needed
to compute all eigenvalues {λi : i ∈ Ω}. Therefore, the use of
Chebyshev polynomials makes the tight wavelet frame trans-
form easily executable. The details can be found in [9] and [38].

C. Fuzzy C-Means

For a domain Ω = {1, 2, . . . ,K}, FCM is used to divide a
data pattern X = {xi : i ∈ Ω} into c clusters by minimizing
the objective function

J(U ,Y ) =

K∑
i=1

c∑
j=1

um
ij‖xi − yj‖2 (4)

where U = [uij ]K×c is a partition matrix with a constraint∑c
j=1 uij = 1 for ∀i and 0 <

∑K
i=1 uij < K for ∀j, Y =

{yi}j=1,2,...,c is a prototype set, m is a fuzzification exponent
(m > 1), and ‖ · ‖ denotes the Euclidean distance.

An alternating iteration scheme [42] is employed to minimize
(4), which is realized as follows:

u
(t+1)
ij =

(‖xi − y
(t)
j ‖2)−1/(m−1)∑c

q=1(‖xi − y
(t)
q ‖2)−1/(m−1)

,

y
(t+1)
j =

∑K
i=1

(
u
(t+1)
ij

)m
xi∑K

i=1

(
u
(t+1)
ij

)m .

Here, t is an iterative step. If ‖U (t+1) −U (t)‖ is less than a
threshold ε, the FCM algorithm terminates.

III. PROPOSED METHODOLOGY

In this section, we formulate the proposed methodology for
G-image segmentation. It consists of three key parts, i.e., spatial
information, wavelet space, and similarity-preserving FCM.

A. Spatial Information Description

Consider a graph G = (V ,E, ω) defined in a domain Ω =
{1, 2, . . . ,K} and an observed G-image g defined on G. In this
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Fig. 3. Illustration of G-images on graph G. (a) Observed G-image.
(b) Segmented G-image.

Fig. 4. Illustration of spatial information of g[i].

work, we discuss how to segment g so as to obtain a segmented
G-image g̃. To make them easier to be understood, we still take
“bunny” in Fig. 2 to intuitively show them, as seen from Fig. 3.

For an arbitrary pixel g[i] ∈ g with i ∈ Ω, its value is nearer
to the ones of its neighbors. To better debase the effect of noise, it
is important to take spatial information into account for G-image
segmentation. We here illustrate spatial information of g[i], as
shown in Fig. 4.

Fig. 4 exhibits a flat representation of the local topological
structure of a graph. Red dot represents a center g[i] being the
ith G-image pixel. Its gray value is defined in a unit interval
[0,1]. To correspond to classic two-dimensional images, the gray
value is usually rescaled to an intensity ranging from 0 to 255 in
the experiment. The neighbor pixels of g[i] are described by
blue dot.Ni indicates the spatial information centralized in g[i],
which contains center g[i] and its neighbor pixels. Since g[i] is
nearer to its neighbors, they generally have similar membership
grades. Therefore, the use of spatial information is beneficial to
the performance improvement of G-image segmentation.

B. Wavelet Space Formation

As (2) indicates, when forming a wavelet space of G-images,
a critical step is to choose a tight frame system or a sequence
of masks. The findings of [39] and [44] show that a piecewise
linear B-spline tight frame system is adaptable to image features
or noise interference. Furthermore, it has a simple explicit ex-
pression for redundant representations of images, which makes
image details better found and retained. In this article, we employ

Fig. 5. Illustration of tight wavelet frame coefficients {Wb,lg} for 0 ≤ b ≤ 2
(columns 1–3) and 1 ≤ l ≤ 4 (rows 1–4).

it including three masks h0, h1, and h2. For ξ ∈ [0, π], the
Fourier transforms of such masks are expressed as

ĥ0(ξ) = cos2
(
ξ

2

)
, ĥ1(ξ) =

1√
2
sin(ξ), ĥ2(ξ) = sin2

(
ξ

2

)
.

(5)
By combining (2) and (5), a decomposition operator W can

be realized. To be specific, (5) exhibits one low-pass mask h0

and two high-pass masks h1 and h2. Once the transform level L
is given, tight wavelet frame coefficients of g are formulated as

Wg = {W0,Lg,W1,1g,W2,1g,W1,2g, . . . ,W2,Lg} . (6)

Such coefficients in (6) constitute the feature set X associated
with g, i.e., X = Wg. For image segmentation, the wavelet
frame coefficientW0,Lg is low-frequency information, and the
rest represent high-frequency information. Hence, (6) describes
a wavelet space formed by using L-level tight wavelet frame
decomposition. To visually exhibit the wavelet space, we use an
example shown in Fig. 5.

As Fig. 5 shows, in the first row, an image “Slope” is mapped
to a unit sphere to form a G-image g. The rest of the rows present
tight wavelet frame coefficients with different transform levels.
Since there exist some geometrical structures in a G-image, its
features (edges and textures) are not randomly distributed. The
second and third columns of Fig. 5, except the first row, show
G-image features detected by the tight frame system (5). Such
features are spatially described and correlated. By performing
the tight frame system (5), G-image features can be easily found
and manipulated.
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C. Similarity-Preserving FCM With
Spatial Information Constraint

According to (6), we rewrite the feature set associated
with g as X = Wg = {W0,lg,W1,lg,W2,lg} = {xi : i ∈
Ω}. Based on (5), we have xi = {xi1, xi2, xi3} ∈ R3. Hence,
the size of X is K × 3. To preserve the membership similarity
among pixels, we introduce a KL divergence term on member-
ship partition as a part of FCM. By combining spatial informa-
tion and KL divergence, we propose similarity-preserving FCM
with a spatial information constraint. It objective function is
expressed as

J(U ,Y ,U) =

K∑
i=1

c∑
j=1

uij

(∑
n∈Ni

ωni‖xn − yj‖2
)

+ α

K∑
i=1

c∑
j=1

uij log
uij

ūij
(7)

such that

∀i ∈ Ω :

c∑
j=1

uij = 1.

For the sake of convenience, a pixel or vertex is loosely repre-
sented by its corresponding index. Thus, n ∈ Ni in (7) denotes
the neighbor pixels or vertices including i. ωni in (7) is a weight
assigned to the edge between n and i, which is computed via (1).
Moreover, α in (7) is a positive parameter to control the effect
of KL divergence term

∑K
i=1

∑c
j=1 uij log

uij

ūij
on the results of

FCM. Here, we introduce a new variable U = [ūij ]K×c that is
referred to a filtered partition matrix, where ūij is a weighted
average on uij , and can be computed over spatial information
Ni around uij . It is given as

ūij =

∑
n∈Ni

ωniunj∑
n∈Ni

ωni
. (8)

The above equation indicates that abnormal membership grade
uij is corrected by the related neighbors. The KL divergence
term aims to keep a sound similarity between uij and ūij .
Hence, with many iterations, the optimal partition matrix U
is computed. In addition, from (7), we see that the value of the
fuzzification exponent m has been fixed at m = 2.

In particular, we note that in [29], KL divergence is first
applied to FCM in classic image segmentation. However, our
work is very different from [29]. To be specific, we focus on
G-image segmentation rather than classic image segmentation.
In [29], the mean filtering is used to produce ūij and its result is
worse than that of our weighted average filtering (8). We present
a novel objective function (7) by virtue of spatial information
and KL divergence, which is different from and superior to the
one reported in [29]. In addition, [29] exhibits a high computing
overhead due to its failure to use spatial information. Our work
offsets this shortcoming of [29].

From (7), we see that its minimization involves three com-
ponents, i.e., U , Y , and U . As (8) indicates, U can be auto-
matically determined by U . Therefore, we design a two-step
iterative algorithm for minimizing (7), where U is first fixed to
compute U and Y , then U is used to update U . The main task

Algorithm 1: Two-Step Iterative Algorithm.

Given a threshold ε, input U
(0)

. For t = 0, 1, . . ., iterate:
Step 1: Find minimizers U (t+1) and Y (t+1):(
U (t+1),Y (t+1)

)
= argmin

U ,Y
LΞ(U ,Y ;U

(t)
). (9)

Step 2: Update the filtered partition matrix U
(t+1)

.
If ‖U (t+1) −U (t)‖ < ε, stop; else update t such that

0 ≤ t ↑< +∞.

in each iteration is to solve the minimization problem in terms
of U and Y when fixing U . Assume that U is given. We apply a
Lagrangian multiplier method to minimize (7). The augmented
function is formulated as

LΞ(U ,Y ;U) =

K∑
i=1

c∑
j=1

uij

(∑
n∈Ni

ωni‖xn − yj‖2
)

+ α
K∑
i=1

c∑
j=1

uij log
uij

ūij
+

K∑
i=1

ξi

⎛⎝ c∑
j=1

uij − 1

⎞⎠
where Ξ = {ξi : i ∈ Ω} collects K Lagrangian multipliers. We
realize a two-step iterative algorithm for minimizing (7) as
Algorithm 1.

Intuitively, the minimization problem (10) includes the fol-
lowing two subproblems:⎧⎨⎩U (t+1) = argmin

U
LΞ(U ,Y (t);U

(t)
)

Y (t+1) = argmin
Y
LΞ(U

(t+1),Y ;U
(t)
)
. (10)

There exists a closed-form solution to either subproblem in
(10). We apply an alternative optimization scheme to optimize
U and Y , which was first proposed in [42] to realize FCM.
Therefore, the iterative updates of U and Y are realized as

u
(t+1)
ij =

ū
(t)
ij exp

(
−∑n∈Ni

ωni‖xn − y
(t)
j ‖2/α

)
∑c

q=1 ū
(t)
iq exp

(
−∑n∈Ni

ωni‖xn − y
(t)
q ‖2/α

) ,
(11)

y
(t+1)
j =

∑K
i=1

(
u
(t+1)
ij

∑
n∈Ni

ωnixn

)
∑K

i=1

(
u
(t+1)
ij

∑
n∈Ni

ωni

) . (12)

To indicate the effect of KL divergence on the algorithm
performance, we cover a case, as shown in Fig. 6. In this
case, we impose 40% impulse noise to a noise-free G-image
[see Fig. 6(a)] including four levels (0, 1/3, 2/3, and 1), thus
resulting in an observed (noisy) G-image shown in Fig. 6(b).
To exhibit the positive effect of KL divergence, we compare
SFCM with FCM while both spatial information and wavelet
space are present. Their membership partitions are illustrated in
Fig. 6(c) and (d), respectively. Obviously, SFCM makes more
suitable membership partitions over FCM since KL divergence
preserves the similarity between a pixel and its neighbors. It also
reduces classification errors.
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Fig. 6. Comparison of partition matrices generated by FCM and SFCM. (a)
Noise-free G-image. (b) Observed G-image. (c) Membership partitions of FCM.
(d) Membership partitions of SFCM.

Algorithm 2: Similarity-Preserving FCM With Spatial In-
formation Constraint in Wavelet Spaces.

Input: Observed G-image g, number of clusters c, and
threshold ε.

Output: Segmented G-image g̃.
1: Calculate the feature set X via (6)

2: Initialize randomly the filtered partition matrix U
(0)

and the prototypes Y (0)

3: t← 0
4: repeat
5: Calculate the partition matrix U (t+1) via (11)
6: Update the prototypes Y (t+1) via (12)

7: Update the filtered partition matrix U
(t+1)

via (8)
8: t← t+ 1
9: until ‖U (t+1) −U (t)‖ < ε

10: return U , Y , and U
11: Calculate the segmented feature set X̃ via U and Y
12: Generate the segmented image g̃ via (13)

Once partition matrix U and prototype Y have been opti-
mized, a segmented feature set X̃ is obtained. Based on it, a
segmented G-image g̃ is reconstructed

g̃ = WT (X̃) (13)

whereWT is a wavelet frame reconstruction operator computed
by (3). Therefore, the proposed algorithm for G-image segmen-
tation is executed via Algorithm 2.

D. Convergence Analysis

In this section, we analyze the convergence of SFCM. Just for
the sake of intuition, we cover it by taking Fig. 5 as a case study.
As Algorithm 2 shows, the termination condition of SFCM is
‖U (t+1) −U (t)‖ < ε. The threshold ε is set to 1× 10−6. In
Fig. 7, we plot the curves of φ = ‖U (t+1) −U (t)‖ and J versus
iteration t, respectively.

Fig. 7. Convergence of SFCM. (a) φ. (b) J versus t.

From Fig. 7(a), we can find that φ initially increases in a short
time and then quickly decreases to the value lower than ε. The
increase of φ is due to the prototypes being randomly initialized.
As Fig. 7(b) shows, however, J presents a descending process
all the time, which means that the segmentation result of SFCM
becomes better, and better as iteration proceeds.

IV. EXPERIMENTAL STUDIES

In this section, we provide supporting experiments for show-
ing the effectiveness and robustness of SFCM. We first test it and
six FCM-related algorithms via many synthetic and real-world
G-images. Its peers include two variants of FCM with spatial
information (namely FCM_S1 [19] and FCM_S2 [19]), fast
generalized FCM (FGFCM) [21], weighted-fuzzy-factor and
kernel-metric-based fuzzy local information c-means (termed as
KWFLICM for short) [24], WFCM [38], and deviation-sparse
FCM with neighbor information constraint (DSFCM_N) [33].

These algorithms have different advantages. FCM_S1,
FCM_S2, and FGFCM are three classic FCM algorithms with
spatial information constraint and have low computing over-
heads. KWFLICM and DSFCM_N have a strong capability
of noise removal, while KWFLICM is a kernel-based FCM
algorithm. WFCM is an FCM variant that we proposed earlier for
segmenting images on graph domains. To further verify SFCM’s
strong robustness, we compare SFCM with two competing
approaches unrelated to FCM, i.e., Piecewise flat embedding
(PFE) [45] and adaptive morphological reconstruction for spec-
tral segmentation (AMR_SC) [46], as illustrated at the end of this
section. The results are evaluated by using three standard criteria:
Segmentation accuracy (SA), Sorensen–Dice similarity (SDS),
and Matthews correlation coefficient (MCC), as summarized
in [47]–[49].

A. Parameter Selection

We first report how to set the parameters needed in these
algorithms. Since AMR_SC and PFE are not related to FCM,
we follow their parameter settings introduced in their original
articles [45], [46]. In the following, we focus on all FCM-related
algorithms. Due to the presence of spatial information, we select
a local window Ni shown in Fig. 4 for all algorithms. We set
the fuzzification exponent m and threshold ε to 2 and 1× 10−6,
respectively. Except the above common parameters, we clarify
their special parameters that are optimal in the experiment. In
FCM_S1 and FCM_S2, α is set to 3.8, which aims to control
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Fig. 8. Segmentation results with changes of α in the presence of different
levels of impulse noise.

the effect of spatial information. For FGFCM, the spatial scale
factor λs and the gray-level scale factor λg are set to 3 and 5,
respectively. KWFLICM has no other parameters. In WFCM, μ
is used to maintain the interest of spatial information and thus is
determined from 0.55–0.65. As to DSFCM_N, 	1 vector norm
is used and λ is set to δ/4, where δ is the standard deviation of
G-image data.

Next, we present the parameter selection of SFCM. As (7)
indicates, the fuzzification exponent m in SFCM is fixed to
2. According to [9], ρ in (1) is equal to 10, where a tight
wavelet frame transform with good redundant representation
performance is obtained. We set the wavelet frame transform
levelL in (6) to 1 since using a higher level only slightly furthers
FCM’s performance while the running time increases signifi-
cantly. As said in Section II-B, using low-degree Chebyshev
polynomials to approximate masks {ĥb} in (5) can make the
tight wavelet frame transform easily executed. By [9], the degree
of Chebyshev polynomials is equal to 7.
α in (7) is an important user-defined parameter, which is used

to control the effect of a KL divergence term on the results of
FCM. Its setting process is described as follows: Due to each
G-image pixel value belonging to [0,1], the order of magnitude
of an arbitrary distance ‖xi − yj‖2 is 10−2. In all experiments,
to correspond to classic two-dimensional images, we usually
rescale all G-images to an intensity ranging from 0 to 255. As a
result, the order of magnitude of the distance ‖xi − yj‖2 gen-
erally goes up to 102. To balance the effect of a KL divergence
term in (7) on the results of FCM,α in (7) should be set to greater
than 1× 102. Generally speaking, most of G-image pixels have
six neighbors, i.e., n = 7 in (7). Since weight ωni is less than
or equal to 1, α should be adjusted to be less than 7× 102. To
sum up, in most cases, we have α ∈ (100, 700). In Fig. 8, as a
case study, we report the setting process of α when segmenting
a G-image [see Fig. 9(a)] contaminated by impulse noise.

As Fig. 8(a)–(c) indicates, with the increase of impulse noise
levels (probability η%), the values of SA, SDS, and MCC all
become worse. For a certain noise level, as α increases, they
always get better until they no longer change apparently. To sum

Fig. 9. Five synthetic G-images.

TABLE I
INVESTIGATION OF EACH COMPONENT IN SFCM

up, largeα yields excellent results. However, by takingη = 40 as
a case, we find that more iterations are triggered when selecting
larger α, as shown in Fig. 8(d). To keep a good tradeoff between
performance and computation, we choose α = 350 for a case
η = 40.

B. Ablation Studies and Analysis

There are three main components involved in SFCM, i.e.,
spatial information, wavelet space, and KL divergence. We
provide ablation studies to analyze their impacts on SFCM
performance. We respectively segment five graphs images (see
Fig. 9) with 40% impulse noise. The average segmentation
results are presented in Table I. Symbol � represents that a
component is present while symbol × stands for its absence.

As Table I shows, we report the performance of SFCM with
eight different combinations of three above components. Based
on (7), when KL divergence is not considered, α should be
equal to 0. However, from (11), SFCM is not executable when
α = 0. Hence, we set α to 50 for approximating the case that
KL divergence is absent. In a wavelet space, the performance
of SFCM is apparently improved. More importantly, KL diver-
gence has the greatest impact on the performance enhancement
of SFCM. However, it leads to more iterations. Since the use
of spatial information makes data distributions optimized to be
easily clustered, the iterations reduce. Therefore, the computing
overhead of SFCM is not high.

C. Results on Synthetic G-Images

We test two groups of synthetic G-images. For a fair com-
parison, all images are rescaled to an intensity ranging from 0
to 255. In the first experiment, we map five images onto a unit
sphere, as shown in Fig. 9. For synthetic G-images, the number
of clusters is known based on their gray-level histograms. In
general, the number of clusters is set to the number of peaks
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Fig. 10. Average segmentation results on five synthetic G-images corrupted
by different types of noises at different levels.

Fig. 11. Segmentation results on synthetic G-image [Fig. 9(a)] corrupted by
impulse noise (η = 40 and α = 350). (a)–(h) Observed G-image and results of
FCM_S1, FCM_S2, FGFCM, KWFLICM, WFCM, DSFCM_N, and SFCM.

of the gray level histogram. In this experiment, the numbers of
clusters c in (7) are 4, 4, 4, 3, and 3, respectively. We exhibit the
average results for segmenting such G-images in the presence of
different types of noises at different levels (Gaussian noise with
standard deviation σ; and impulse noise with probability η%).
They are summarized in Fig. 10. For a visual analysis, we show
a case in Fig. 11.

As Fig. 10 indicates, all algorithms can get over Gaussian
noise of low levels effectively. KWFLICM outperforms other
peers except SFCM. When the noise level is extremely high, only
the results of SFCM remain at a good level. In the presence of
impulse noise, FCM_S1, FCM_S2, and FGFCM perform poorly.
As the noise levels increase, the segmentation results of other
algorithms also become worse. Among them, SFCM still works
the best. From Fig. 11, we intuitively find that SFCM not only
removes impulse noise of high levels well but also retains more
image features.

Due to a unit sphere having a regular topological structure,
segmenting images defined on it is not generally hard. In the
second experiment, to exhibit the capacity of SFCM to cope
with images on graphs including complex topologies, we se-
lect ten different graphs coming from Stanford 3D Scanning
Repository.1 We map the two-dimensional image [Fig. 9(a)] onto
them, thus producing ten G-images, as shown in Fig. 12. We
set c = 4. The average segmentation results on such G-images
are summarized in Fig. 13. A selected example is portrayed in
Fig. 14.

1[Online]. Available: http://www.graphics.stanford.edu/data/3Dscanrep/

Fig. 12. Ten synthetic G-images.

Fig. 13. Average segmentation results on ten synthetic G-images corrupted
by different types of noises at different levels.

Fig. 14. Segmentation results on synthetic G-image [Fig. 12(i)] corrupted by
impulse noise (η = 40 and α = 350). (a)–(h) Observed G-image and results of
FCM_S1, FCM_S2, FGFCM, KWFLICM, WFCM, DSFCM_N, and SFCM.

As Fig. 13 shows, when coping with complex graphs, six
peers cannot suppress Gaussian noise of high levels. FCM_S1,
FCM_S2, and FGFCM have no resistance to impulse noise.
KWFLICM does not remove high levels of impulse noise.
Compared with four above algorithms, WFCM and DSFCM_N
obtain better segmentation results. In particular, DSFCM_N is
robust to impulse noise of high levels since it is modeled by
noise sparsity. Compared with all peers, SFCM performs the
best. The visual results shown in Fig. 14 also validate the above
conclusions.
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Fig. 15. Average segmentation results on two sets of real-world G-images. (a)
Sea ice and snow extent. (b) Chlorophyll concentration.

Fig. 16. Segmentation results on sea ice and snow extent in February 7–14,
2015 (α = 350). (a)–(h). Observed G-image and results of FCM_S1, FCM_S2,
FGFCM, KWFLICM, WFCM, DSFCM_N, and SFCM.

D. Results on Real-World G-Images

To further exhibit the segmentation ability of SFCM, we test
two sets of real-world G-images with unknown noise, which
are borrowed from NASA Earth Observation Database.2 Each
set corresponds to a specific scene and includes a number of
G-images sampled at some point in time. Due to lack of ground
truth, three standard criteria cannot be calculated directly. To
deal with this issue, we collect all G-images sampled at same
point in time within the time span 2000–2019. Thus, the mean
G-image for some point in time is generated, which is regarded
as ground truth. For real-world G-images, how to set the number
of clusters depends on their actual meaning. In this experiment,
we set c to 4 and 2 for segmenting the two sets of G-images,
respectively. The average segmentation results for each set are
given in Fig. 15. In Figs. 16 and 17, we exhibit two samples
chosen from two sets.

2[Online]. Available: http://neo.sci.gsfc.nasa.gov/

Fig. 17. Segmentation results on chlorophyll concentration in October, 2019
(α = 150). From (a) to (h): observed G-image and results of FCM_S1, FCM_S2,
FGFCM, KWFLICM, WFCM, DSFCM_N, and SFCM.

TABLE II
COMPUTATIONAL COMPLEXITY OF ALL ALGORITHMS

As Fig. 15 shows, SFCM acquires better segmentation results
than its six peers. When coping with the first set of G-images,
the performance of FGFCM, KWFLICM, and DSFCM_N is
unsatisfactory since they yield incorrect clusters as shown in
Fig. 16. Since FCM_S1, FCM_S2, and WFCM do not fully
remove unknown noise, their results are not good either. As for
segmenting the second set of G-images, as shown in Fig. 17, its
peers give rise to several topology changes including merging
and splitting, or insufficient noise removal. In conclusion, the
performance of SFCM is superior to all of them.

E. Computing Overhead

To illustrate SFCM’s efficiency, we provide the computing
overheads of SFCM and its peers. We clarify that K is the
number of G-image pixels, c is the number of prototypes, t
is the iteration count, |Ni| denotes the size of a local window
centralized at pixel i, and μ is the number of pixel levels in a
G-image. Generally, μ� K. The computational complexity of
SFCM and other FCM variants is presented in Table II.

As Table II shows, FGFCM has lower computational com-
plexity than its peers due to μ� K. Except WFCM and SFCM,
the computational complexity of other algorithms is regarded
as O(K). Since O(K logK) associated with a tight wavelet
frame transform is close toO(K), the computational complexity
of WFCM and SFCM is not high. In addition, to compare
the practicability between SFCM and its peers, we gather the
execution time of all algorithms on tested G-images in Table III.
We clarify that all experiments are performed in Matlab on a
laptop with Intel(R) Core(TM) i5-8250 U CPU of (1.60 GHz)
and 8.0 GB RAM.
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TABLE III
COMPARISON OF EXECUTION TIME (IN SECONDS) OF ALL ALGORITHMS

Fig. 18. Segmentation results on four G-images (α1 = 300,α2 = 450,α3 =
350, and α4 = 150). From top to bottom: observed G-images and results of
AMR_SC, PFE, and SFCM.

TABLE IV
COMPARISON OF SEGMENTATION PERFORMANCE BETWEEN

SFCM AND TWO NON-FCM METHODS

From Table III, we can observe that KWFLICM is the most
time-consuming. Its execution time is far greater than one of
other peers. In contrast to it, FGFCM requires the least time
since gray-level histograms instead of image pixels are used
in clustering. In fact, all algorithms except KWFLICM have
acceptable computing overheads. SFCM requires less time than
most of them. In addition, it obtains the best performance among
them. Therefore, it is more practical.

TABLE V
COMPARISON OF EXECUTION TIME (IN SECONDS) BETWEEN SFCM AND TWO

NON-FCM METHODS

F. Comparison With Non-FCM Methods

In this section, we compare SFCM with two non-FCM meth-
ods, i.e., PFE [45] and AMR_SC [46]. Here, we test two
synthetic G-images and two real-world ones. Note that mixed
Gaussian and impulse noise with level σ = 30 and η = 20 is
added on synthetic ones. We list the comparison results on
four G-images in Fig. 18 and Table IV. The computing time
of SFCM, AMR_SC, and PFE is summarized in Table V. The
results indicate that SFCM achieves higher effectiveness and
efficiency than AMR_SC and PFE.

V. CONCLUSION

In this article, we investigate an extension of classic image
segmentation, i.e., G-image segmentation. In this emerging field,
we present a similarity-preserving FCM algorithm by integrating
into FCM three key components, i.e., spatial information,
wavelet space, and KL divergence. It optimizes the partition
matrix of FCM by using KL divergence, which further enhances
FCM’s performance. By spatial information constraint, it
becomes more robust to noise and applicable to various graphs
including those with complex topologies. In addition, it can
easily extract image features in a wavelet space, which benefits
its performance enhancement. Experimental results demonstrate
that the proposed algorithm outperforms state-of-the-art
techniques and requires less time than most of them.

There are several open issues worth further pursuing. The
first question is whether graph domains can be refined in such
applications as remote sensing [50], ecological systems [51],
[52], and transportation networks [53]. Can the size of spatial
information be further expanded and the number of clusters be
selected automatically by using intelligent optimization? They
remain open.
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