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Sparse Regularization-Based Fuzzy C-Means
Clustering Incorporating Morphological Grayscale

Reconstruction and Wavelet Frames
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Abstract—The conventional fuzzy C-means (FCM) algorithm
is not robust to noise and its rate of convergence is generally
impacted by data distribution. Consequently, it is challenging to
develop FCM-related algorithms that have good performance and
require less computing time. In this article, we elaborate on a
comprehensive FCM-related algorithm for image segmentation.
To make FCM robust, we first utilize a morphological grayscale
reconstruction (MGR) operation to filter observed images before
clustering, which guarantees noise-immunity and image detail-
preservation. Since real images can generally be approximated by
sparse coefficients in a tight wavelet frame system, feature spaces of
observed and filtered images can be obtained. Taking such features
to be clustered, we investigate an improved FCM model in which a
sparse regularization term is introduced into the objective function
of FCM. We design a three-step iterative algorithm to solve the
sparse regularization-based FCM model, which is constructed by
the Lagrangian multiplier method, hard-threshold operator, and
normalization operator, respectively. Such an algorithm can not
only perform well for image segmentation, but also come with
high computational efficiency. To further enhance the segmenta-
tion accuracy, we use MGR to filter the label set generated by
clustering. Finally, a large number of supporting experiments and
comparative studies with other FCM-related algorithms available
in the literature are provided. The obtained results for synthetic,
medical and color images indicate that the proposed algorithm
has good ability for multiphase image segmentation, and performs
better than other alternative FCM-related algorithms. Moreover,
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the proposed algorithm requires less time than most of the existing
algorithms.

Index Terms—Fuzzy C-means (FCM) algorithm, image
segmentation, morphological grayscale reconstruction (MGR),
sparse regularization, tight wavelet frame.

I. INTRODUCTION

IMAGE segmentation, as a fundamental image operation,
aims to divide an image into several non-overlapped and

consistent regions. It is often a challenging task in computer
vision and image understanding. Over the past three decades, a
series of image segmentation technologies were proposed [1]–
[10], [14], [15]. Such technologies involve various unsupervised
or supervised approaches, such as clustering [1]–[4], watershed
transform [5], Graph Cut [6], neural network [7]–[9], and active
contour model [10]. Among them, clustering is widely applied
to image segmentation due to its effectiveness, thus resulting
in a large number of clustering-based algorithms [11]–[19].
Generally speaking, traditional clustering-based algorithms are
usually Boolean (binary) in the sense that they admit pixels to
exclusively belong to a single cluster. Whereas, superior to these
algorithms, a fuzzy C-means (FCM) algorithm is soft in its na-
ture since it assigns image pixels to multiple clusters based on a
collection of degrees of membership assuming values in the unit
interval. However, conventional FCM is sensitive to noise and
its rate of convergence is generally impacted by data distribution
characteristics. Consequently, FCM-related algorithms that can
remove noise and require less time simultaneously are not well
exploited.

To address this challenging problem, we innovatively pro-
pose a sparse regularization-based FCM algorithm for image
segmentation through incorporating morphological grayscale
reconstruction (MGR) [20], [21] and a tight wavelet frame
transform [22], [23]. The framework of the proposed algorithm
is illustrated in Fig. 1. In order to improve FCM’s robustness,
we first use MGR to filter an observed image. A tight wavelet
frame system is utilized to acquire feature spaces of observed
and filtered images, i.e., high- and low-frequency information.
Taking these feature sets as data of clustering, an improved
FCM algorithm is presented for segmenting feature sets where
a sparse regularization term is introduced into the objective
function of FCM. To further reduce the misclassification rate, we
use MGR to filter labels generated by clustering, which makes
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Fig. 1. Framework of the proposed algorithm.

segmentation accuracy improved as much as possible. Finally,
by combining the prototypes and filtered label set, a segmented
image is reconstructed by the tight wavelet frame reconstruction
operation.

This article offers four main contributions to the advancement
of the area. First, to improve simultaneously noise-immunity
and retention capacity of image details, we employ MGR to
filter images for the further segmentation. This means that
MGR introduces spatial information of images into the objective
function of FCM. Therefore, the usage of MGR makes FCM
more robust to different types of noise.

The second contribution is that a tight wavelet frame system
is borrowed to form feature sets of images, which removes the
difficulty of the direct use of image pixels. Since real images can
be approximated by sparse coefficients in tight wavelet frame
systems, information in images can be sufficiently analyzed and
manipulated. The underlying idea of using the wavelet frame
system is to transform original data space to a new one. The new
feature space is advantageous for analyzing and manipulating
image data and further makes underlying image features and
noise easy to find.

The third contribution is to bring a sparse regularization
term into the objective function of FCM, thus forming a sparse
regularization-based FCM model. This term constrains the re-
dundancy of degrees of membership, thus leading to the strong
sparsity of the partition matrix generated by FCM. For each
iteration of FCM, all degrees of membership of each pixel with
respect to all clusters do not have to be calculated since they lead
to a low rate of convergence of FCM. Hence, sparse regulariza-
tion greatly improves FCM’s computational efficiency. Further-
more, the segmentation accuracy of FCM is also improved to
some extent.

Finally, we make a contribution by designing a three-step
iterative algorithm to solve the sparse regularization-based FCM
model. The proposed algorithm is constructed by the Lagrangian
multiplier method, hard-threshold operator, and normalization

operator, respectively. In particular, we apply the Lagrangian
multiplier method to achieve the exact solution to the first inner
problem of the proposed algorithm.

Except for four main contributions mentioned above, we also
prudently use MGR to filter labels generated by clustering,
which reduces the possibility of misclassification. Clearly, this
step is also a non-overlooked contribution of the proposed
algorithm.

The rest of this article is organized as follows. Section II
reviews some related studies on FCM, and makes some com-
ments. Section III briefly formulates FCM and a wavelet frame
transform. Section IV introduces the proposed algorithm step by
step. In Section V, experimental results for synthetic, medical
and color images are reported. Finally, Section VI conclude this
article.

II. RELATED WORKS

In this section, FCM-related image segmentation techniques
are briefly reviewed. The FCM algorithm was first introduced by
Dunn [1], and further improved by Bezdek [2]. Since the conven-
tional FCM algorithm is sensitive to noise, non-robust results are
usually acquired. To deal with this problem, researchers mainly
focused on two directions: considering spatial information of
images [15], [16], [24]–[26] and using kernel distances [14],
[17], [27]–[29].

In light of the first investigation, a number of improved FCM
algorithms have been presented [15], [16], [24]–[26]. For exam-
ple, Ahmed et al. [15] propose an improved FCM algorithm,
namely FCM_S, by introducing spatial information into the
objective function of FCM. FCM_S has to compute a spatial
neighbors term for each iteration. Although FCM_S makes full
use of impact of neighboring pixels, it has high computational
complexity. In order to overcome the drawback of FCM_S, Chen
and Zhang [16] utilize average and median filters to preprocess
observed images in advance. Thus two variants of FCM_S,
FCM_S1 and FCM_S2, with a higher computational efficiency
than FCM_S are proposed. However, they do not work well for
Gaussian or other well-known noise since prior knowledge of
noise cannot be ascertained. Subsequently, Szilagyi et al. [24]
introduce an enhanced FCM algorithm (EnFCM) by considering
a summed image as data of FCM. EnFCM is time-saving since it
executes clustering depending on gray level histograms instead
of pixels. However, the segmentation results of EnFCM are
only superior to those of FCM_S. For improving EnFCM’s
results, Cai et al. [25] propose a fast generalized FCM algorithm
(FGFCM) by incorporating a local similarity measure. Similar
to EnFCM, this algorithm requires less computational time due
to the usage of gray level histograms. However, it requires
more parameters to balance robustness to noise and effect of
retaining feature details. In general, the parameter selection
within FGFCM depends on experience and trial-and-error. In
order to simplify the parameter setting of FGFCM, Krinidis
et al. [26] report a novel algorithm, namely FLICM, by using
a fuzzy factor to replace parameters in FGFCM. Compared
with FGFCM, FLICM is not only free of parameter setting, but
also improves the segmentation effect. However, the drawback
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of FLICM comes with the usage of the non-robust Euclidean
distance that is not effective for arbitrary spatial information of
images.

To overcome FLICM’s shortcoming, another investigation is
to introduce robust kernel distances into its objective function.
The aim of kernel distances is to transform the original data space
to a new feature space by using a nonlinear mapping. Hence,
the essence of target data can be easily found and manipulated.
The wide usage of kernel distances leads to a series of kernel-
based FCM algorithms [14], [17], [27]–[29]. For instance, Gong
et al. [17] propose an improved FCM algorithm (KWFLICM)
based on a tradeoff weighted fuzzy factor and a kernel metric.
KWFLICM improves the robustness of FLICM to different types
of noise, and does not require any parameter setting. Neverthe-
less, it is more time-consuming than FLICM. Zhao et al. [27]
report a neighborhood weighted FCM algorithm (NWFCM).
It defines a neighborhood weighted-distance to replace a usual
Euclidean distance in FCM. Although NWFCM requires less
time than FLICM and KWFLICM, its computational efficiency
is still lower than most FCM-related algorithms because of
using the patch distance and setting parameters. Elazab et al.
[28] present an FCM framework (ARKFCM) that incorporates
the Gaussian radial basis kernel function into the objective
function of FCM. This framework performs well for fixed noise,
but is not robust when coping with unknown noise. Recently,
Wang et al. [14] propose a wavelet frame-based FCM algorithm
(WFCM) and apply it to segment images in non-flat domains.
This algorithm considers wavelet frames as a kernel function,
thus forming feature spaces of images. Compared with other
existing algorithms, WFCM has a better capability to recognize
image features.

In addition, many comprehensive FCM-related algorithms
involving various mathematical techniques, such as Kullback-
Leibler (KL) divergence, morphological reconstruction, and
sparse representation, have been recently proposed [18], [19],
[30], [31]. For example, Gharieb et al. [30] employ the KL
divergence to modify the objective function of the C-Means
algorithm, thus forming a developed FCM algorithm. This algo-
rithm works well on the basis of local membership and locally-
smoothed data. However, it is time-consuming due to the usage
of local information for each iteration. Gu et al. [18] present a
fuzzy double C-Means algorithm (FDCM) by introducing sparse
representation into FCM. Differing other FCM-related algo-
rithms, FDCM can address two datasets simultaneously. The one
is the basic feature set obtained from original images. The other
is a learning feature set coming from a spare self-representation
model. FDCM is robust to noise, thus it has good clustering
performance. However, it has higher computational complexity
than other algorithms. More recently, Lei et al. [19] propose
a fast and robust FCM algorithm (FRFCM) by incorporating
MGR and membership filtering, which are regarded as pre-
and post-processing steps in addition to the main clustering
algorithm. FRFCM performs clustering on the basis of gray level
histograms, thus it is fast. However, its performance can still be
improved.

Through reviewing the related work, it is concluded that
existing algorithms pay much attention to segmentation effect or

computational efficiency, but cannot simultaneously take them
into consideration. Even though these algorithms are effective
for image segmentation, their computational efficiency is usually
low due to multiple factors, such as parameter selection, high-
dimensional data space, and image patch. In addition, we also
find that existing algorithms in the literature mostly depend on
the improvement of non-Euclidean distance and noise detection
to low the computational complexity. Especially, they ignore
discussion on the sparsity of the partition (membership) matrix
generated by clustering. Consequently, FCM-related algorithms
that have simultaneously good performance and require less time
are not well exploited.

Inspired by recent work in [14] and [19], we propose a
comprehensive FCM-related algorithm. One of our motivations
is to use MGR to filter images before segmentation, which
means that spatial information of images is introduced into
FCM. What’s more, we innovatively employ a wavelet frame
system to transform image pixels to feature spaces of images,
which makes information in images sufficiently analyzed and
manipulated. The proposed algorithm can naturally be regarded
as a kernel-based FCM algorithm when taking tight wavelet
frames as a kernel function.

Under the premise of ensuring good segmentation perfor-
mance, we also do our best to reduce the computational time. For
each iteration of FCM, degrees of membership of each pixel with
respect to all clusters have to been calculated. Thus it leads to a
low rate of convergence. Actually, the calculation of all degrees
of membership is redundant. However, if pixels are only assigned
to a single cluster, FCM reduces to K-Means. Therefore, we
can guarantee that the partition matrix has a certain sparsity
in order to reduce the iteration count of FCM. In light of this
point, we introduce a sparse regularization term about degrees
of membership into the objective function of FCM. It greatly
enhances the computational efficiency of clustering.

In addition, the rate of convergence of FCM is generally
determined by data distributions. Thus, the usage of MGR and a
tight wavelet frame system before clustering makes distribution
characteristics of image pixels adaptive to fuzzy clustering. It
also reduces the computational cost of clustering. In conclu-
sion, the proposed algorithm has good performance for image
segmentation with high computational efficiency.

III. PRELIMINARIES

A. FCM Algorithm

Given a gray image f of size M ×N , we express it as
a K-dimensional vector, where K represents the number of
image pixels, i.e., K =M ×N . Due to various underlying
attributes (variables) of pixels, we can formulate f as data
X = {x1,x2, . . . ,xK} ⊂ RK . An FCM algorithm divides X
into several clusters. Its objective function is

J =

c∑
i=1

K∑
j=1

umij‖xj − vi‖2,

where U = [uij ]c×K is a partition (membership) matrix with a
constraint of

∑c
i=1 uij = 1 and 0 ≤ uij ≤ 1,m is the fuzziness
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coefficient (m > 1), ‖ · ‖ denotes the Euclidean distance, and c
is the number of clusters.

The iterative updates of the partition matrix and prototypes
are given as follows [32]:

uij =
(‖xj − vi‖2)−

1
m−1∑c

q=1(‖xj − vq‖2)−
1

m−1
and vi =

∑K
j=1 u

m
ijxj∑K

j=1 u
m
ij

.

This iterative updates of the partition matrix and prototypes
stop when the termination condition ‖U (t) −U (t−1)‖ < ε has
been met, where ε is a nonnegative threshold, and t denotes the
t-th iteration.

B. Tight Wavelet Frame Transform

Wavelet frames have a powerful ability to provide redundant
representations of images. Over the past two decades, wavelet
frames have been applied to a variety of applications, such as
image segmentation [14], [33], [34], image restoration [23],
[35], image denoising [36], [37], and surface reconstruction
[38], [39]. In this section, we briefly describe the main idea
of a tight wavelet frame transform. More details can be found
in [22] and [23]. The discrete wavelet frame decomposition,
denoted asW , can be generated by collecting all filters (masks)
in a wavelet frame system. The linear operator (matrix) W
consists of γ sub-filtering operators, i.e., W0,W1, . . . ,Wγ−1.
Among them, W0 is a low-pass filtering operator and the rest
are high-pass filtering operators. According to unitary extension
principle [40], the tight wavelet frame reconstruction, denoted
as WT , can be obtained. Thus, we have WTWf = f, where
WTW is an identity operation, and f is a gray image.

IV. METHODOLOGY

A. Image Pixel Filtering via MGR

MGR has good performance for preserving object contours
and removing noise simultaneously. Before applying FCM, we
introduce MGR to filter images for the achievement of optimal
distribution characteristic of image pixels.

Formally speaking, MGR contains two basic operators, i.e.,
dilation and erosion reconstructions [41]. Given two images f
(mask image) and g (marker image), we denote the dilation
reconstruction asRDf (g) that is formulated by

RDf (g) = D
(t)
f (g),

where D(t)
f (g) is defined as

D(t)
f (g) =

{
D(g) ∧ f, t = 1

D(D(t−1)(g)) ∧ f, t = 2, 3, . . .

where g ≤ f , ∧ stands for the point-wise minimum and D
represents the dilation of g by a flat structuring element [21].

The erosion reconstruction is denoted byREf (g):

REf (g) = E
(t)
f (g),

Fig. 2. Filtered results using MGR. (a) Original image. (b) Image corrupted
by AWGN (s = 20). (c) Image corrupted by mixed Gaussian and impulse noise
(s = 10, r = 20%). (d) Filtered result for (b). (e) Filtered result for (c).

TABLE I
COMPARISON BETWEEN NOISY AND FILTERED IMAGES ABOUT

ITERATIONS OF FCM

where E(t)f (g) is defined as

E(t)f (g) =

{
E(g) ∨ f, t = 1

E(E(t−1)(g)) ∨ f, t = 2, 3, . . .

where g ≥ f , ∨ stands for the point-wise maximum and E
represents the erosion of g by a flat structuring element.

At the beginning of MGR, we have to select marker and mask
images. The observed image is generally considered as a mask
image, then its transformation is used as a marker image. For
real applications, g = E(f) and g = D(f) are selected as marker
images for dilation and erosion reconstructions, respectively.

On the basis of dilation and erosion reconstructions, the
morphological closing reconstruction of f is defined as

RC(f) = RERDf (E(f))(D(R
D
f (E(f)))). (1)

Here, let f be the filtered image, i.e., f = RC(f).
In order to show the filtering effect of MGR in presence of

different types of noise, we show an example in Fig. 2. Here, we
take a square of size 3× 3 as the structuring element.

As shown in Fig. 2, there exist four obvious peaks in the
gray level histogram of the original image. However, gray level
histograms of images contaminated by additive white Gaussian
noise (AWGN, with standard deviation s) or a mixture of AWGN
and salt and pepper impulse noise (SPIN, with density r) have
no obvious peaks except extrema (0 and 255). In Fig. 2(d) and
(e), pixels of filtered images are usually split into 4 clusters.
The results are similar to those of Fig. 2(a). Thus, MGR can
effectively retain object contours and remove noise.

To achieve better segmentation, we integrate MGR into FCM.
We still take Fig. 2 as an example. Table I shows the comparison
between noisy and filtered images about iterations of FCM in
presence of different types of noise. Here, we set c = 4.

Table I indicates that the number of iterations of FCM on
filtered images is lower than that on noisy images. As the number
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Fig. 3. Original image f and its wavelet coefficients. (a) Original image f .
(b)–(j)W0f,W1f, . . . ,W8f .

of iterations decreases, MGR is effective for optimizing data
distribution.

B. Feature Extraction via Wavelet Frames

Since the piecewise linear B-spline tight frame system [40],
[42] can redundantly represent images, it has more adaptive
properties to noise. Hence, we adopt this system. Formally
speaking, the corresponding filters in discrete version are

a0 =

[
1

4
,
1

2
,
1

4

]
, a1 =

[
−1

4
,
1

2
,−1

4

]
, a2 =

[√
2

4
, 0,−

√
2

4

]
.

The above 1-D filters are able to generate nine two-
dimensional filters, including a single low-pass filter and eight
high-pass filters, corresponding to nine tight wavelet frame
operatorsW0,W1, . . . ,W8. Thus, we can employ tight wavelet
frames to generate feature spaces of images, i.e., X =Wf and
X =Wf , where X is the feature set associated with image f ,
X is that with filtered image f . Here,W0f andW0f represent
low-frequency information, and the rest are high-frequency in-
formation. In order to exhibit the effect of wavelet frames, an
example is shown in Fig. 3.

Fig. 3(b) represents low-frequency information in image f .
Moreover, Fig. 3(c)–(j) represent high-frequency information in
image f . Clearly, tight wavelet frame systems can redundantly
represent images, thus they offer more adaptive properties to
feature details.

C. Sparse Regularization-Based FCM

Under the premise of ensuring good segmentation perfor-
mance, we also try to enhance the computational efficiency. We
can guarantee that the partition matrix has a certain sparsity
to reduce the iteration count of FCM. Therefore, we introduce
a sparse regularization term on degrees of membership. The
detailed formulation is described as follows.

To implement clustering, we reformulate X =Wf =
{x1,x2, . . . ,xK} and X =Wf = {x1,x2, . . . ,xK}, which
denote sets of feature vectors associated with f and f . To opti-
mize the rate of convergence of clustering, we introduce sparse
�0-norm regularization into the objective function of FCM. The

modified objective function is represented as follows:

J =

c∑
i=1

K∑
j=1

umij (‖xj − vi‖2 + α‖xj − vi‖2) + β‖U‖�0 ,

(2)
where α and β are positive numbers that control the impacts of
filtered term ‖xj − vi‖2 and sparse regularization term ‖U‖�0
respectively. ‖ · ‖�0 denotes the �0 vector norm. For example,
‖U‖�0 is defined to be the number of nonzero entries in U ,
which is formulated as

‖U‖�0 =

c∑
i=1

K∑
j=1

|uij |0

with

|uij |0 =

{
1, uij 	= 0
0, uij = 0

.

We design an optimization framework to minimize (2):
Step 1: Solve η, V .

(η,V ) = argmin
c∑

i=1

K∑
j=1

ηmij (‖xj − vi‖2 + α‖xj − vi‖2)

s. t.
c∑

i=1

ηij = 1, for j = 1, 2, . . . ,K

,

(3)
where η = [ηij ]c×K and V = {vi}i=1,2,...,c.

Step 2: Solve Ũ .

Ũ = Tβ(η), (4)

where T is a hard-threshold operator and Tβ(η) is defined as:

Tβ(η) = [Tβ(ηij)]c×K

with

Tβ(ηij) :=

⎧⎨⎩ηij , ηij ≥
√
β

0, ηij <
√
β
.

Moreover, 0 <
√
β ≤ minj=1,2,...,K{maxi=1,2,...,c[ηij ]}.

Step 3: Solve U .

U = normalize(Ũ), (5)

with element uij = ũij/
∑c

i=1 ũij . Here, normalize denotes a
normalization operator.

Obviously, there exist three steps in the framework. ηij is
first obtained by solving (3). Then we apply a hard-threshold
operator to ηij , thus generating ũij . Finally, uij is acquired by
imposing a normalization operator on ũij , which is an optimal
approximation solution to (2). In Step 1, ηij is an exact solution
to (3) and just a transitional value of uij , which means that ηij
is a rough fuzzy membership without sparsity. We can acquire
ηij by the assistance of Lemma 4.1. The details are reached as
follows.

Lemma 4.1: Consider the minimization problem (3). By ap-
plying the Lagrangian multiplier method to solve (3), its iterative
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Fig. 4. Comparison of partition matrices produced by the FCM algorithm and
sparse regularization-based FCM (c = 4, α = 2, and β = 0.01). (a) Original
synthetic image included four gray levels (0, 85, 170, 255). (b) Image corrupted
by SPIN (r = 35%). (c) Membership partition using FCM. (d) Membership
partition using sparse regularization-based FCM.

Fig. 5. Rates of convergence and classification errors on Fig. 4(b) with
different values of β.

solutions are obtained as follows:

ηij =
(‖xj − vi‖2 + α‖xj − vi‖2)−

1
m−1∑c

q=1(‖xj − vq‖2 + α‖xj − vq‖2)−
1

m−1
, (6)

vi =

∑K
j=1 η

m
ij (xj + αxj)

(1 + α)
∑K

j=1 η
m
ij

. (7)

Proof: See the Appendix. �
We here test two examples (refer to Figs. 4 and 5) to demon-

strate the impact of the sparse �0-norm regularization on FCM.
Fig. 4 shows how the sparse �0-norm regularization optimize the
membership partition. In order to better express the performance
optimization, we consider the image filtering and set α = 2. As
shown in Fig. 4, when β = 0.01, the sparse �0-norm regulariza-
tion makes the proper membership partition stronger.

Fig. 5 exhibits the effect of the sparse �0-norm regularization
on the rate of convergence and classification errors. Since MGR
can optimize the data distribution to further enhance the rate
of convergence of FCM, we only impose the sparse �0-norm
regularization on FCM without considering image filtering, i.e.,
α = 0. When β = 0, the sparse �0-norm regularization has no
impact on FCM, and the number of iterations comes up to
maximum. As the values of β increase, the rate of convergence

Fig. 6. Comparison between the original and filtered label images. From left
to right: (a) Ground image; (b) original label image; (c) filtered label image.

of FCM becomes higher and the number of misclassified pixels
becomes smaller.

It is important to claim here that the value of β cannot be
set too large. Although a larger β can make FCM’s convergence
faster, it could also increase the likelihood of producing incorrect
membership partitions since prototypes are randomly initialized.
Moreover, if β is greater than the maximum degree of member-
ship where any image pixel is assigned to multiple clusters, FCM
will not converge. Therefore, when setting β, it is necessary to
experimentally increase its value from 0 and run the experiment
several times in order to achieve the optimal segmentation.

D. Label Filtering via MGR

In order to further reduce the misclassification rate of clus-
tering, we use MGR to filter labels of image pixels. For j =
1, 2, . . . ,K, target label ψj states that pixel fj belongs to the ith
cluster. It is defined as

ψj = label(max{u1j , u2j , . . . , ucj}),

where label denotes the location of maximum uij , i.e., ψj = i.
Thus, we can define the label set of image pixels as

Ψ = {ψj} = {label(max{u1j , u2j , . . . , ucj})} (8)

for j = 1, 2, . . . ,K. We reformulate label setΨ in a matrix form
with size M ×N . Thus a label image, denoted as Ψim, can be
obtained. We use MGR to filter the original label imageΨim, then
generating a filtered label image Ψim that is denoted as Ψim =
RC(Ψim). Here, we show an example to verify the advantage of
label filtering.

Fig. 6 gives the comparison between original and filtered label
images. We can find the filtered label image is closer to the
original image.

Based on the filtered label image Ψim and the obtained
prototypes V , the segmented feature set X̂ is obtained. Then
we can reconstruct a segmented image f̃ using wavelet frame
reconstructionWT :

f̃ =WT (X̂). (9)

The proposed algorithm is realized in Algorithm 1.
To assess the segmentation performance of different FCM-

related algorithms, we adopt two objective performance indices,
i.e., segmentation accuracy (SA) [43] and entropy-based infor-
mation (EI) [44].
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Algorithm 1: Sparse Regularization-Based FCM Algorithm
Incorporating MGR and Tight Wavelet Frames (SRFCM).
Input: Image f , threshold ε, fuzziness coefficient m, and

number of clusters c.
Output: Segmented image f̃ .
1: Calculate filtered image f based on (1)
2: Calculate feature sets X and X based onWf andWf

3: Initialize randomly prototypes v(0)
i

4: t← 1
5: repeat
6: Use prototypes v(t−1)

i to update partition matrix
U (t) based on (4)–(6)

7: Use partition matrix U (t) to update prototypes v(t)
i

based on (7)
8: t← t+ 1
9: until ‖U (t) −U (t−1)‖ < ε

10: return partition matrix U and prototypes vi

11: Generate labels of image pixels based on (8)
12: Use MGR to filter labels
13: Generate a segmented image f̃ based on (9)

SA is often employed to evaluate segmentation effects on
target images with known ground truth, which is formulated as

SA = (TP + TN)/(FN + FP + TP + TN),

where TP, FP, TN, and FN are the number of true positive, false
positive, true negative, and false negative, respectively.

For target images without ground truth, EI is often used to
assess the performance of segmentation algorithms, which is
formulated as

EI = H1(f̃) +H2(f̃),

whereH1(f̃) is the expected region entropy of segmented image
f̃ , which is defined as

H1(f̃) =

c∑
i=1

|Ai|H(Ai)

|f̃ |

with the entropy for Ai is defined as

H(Ai) = −
∑
z∈Zi

|Ai(z)|
|Ai|

log
|Ai(z)|
|Ai|

.

Here, Ai(z) denotes the set of pixels in Ai whose gray level
values equal to z, and Zi represents the set of all gray level
values in Ai. Moreover, H2(f̃) denotes the layout entropy of
segmented image f̃ , which is defined as

H2(f̃) = −
c∑

i=1

|Ai| log |Ai|
| ˜f |

|f̃ |

The aim of EI is to minimize the uniformity across the
clusters while maximizing the uniformity of pixels within each
segmented cluster. Hence, the smaller the EI value is, the better
the segmentation effect is achieved.

V. EXPERIMENTAL STUDY

In the following, we mostly conduct ablation studies and
report numerical results on a collection of synthetic, medical,
and color images. Moreover, we also provide segmentation
comparisons between SRFCM and other existing algorithms
available in the literature, i.e., ‘FCM_S1’ [16], ‘FCM_S2’ [16],
‘EnFCM’ [24], ‘FGFCM’ [25], FLICM [26], ‘KWFLICM’ [17],
‘ARKFCM’ [28], ‘FDCM’ [18], ‘FRFCM’ [19], and ‘WFCM’
[14]. The comparisons are done both visually and quantitatively.

A. Parameter Setting

Prior to the numerical implementation of SRFCM and other
algorithms, we require to set several parameters. All algorithms
except FDCM consider spatial information of observed images.
Therefore, for fair comparison, a local window with size 3× 3
is set for these algorithms with the usage of spatial information.
The fuzziness coefficient m = 2 and threshold ε = 10−6 are
the same in all algorithms. The suitable number of clusters c
is assumed to be known, and preset the same for all algorithms.

Except for common parametersm, ε, and c, according to [16]
and [24], α in FCM_S1, FCM_S2, and EnFCM is experientially
set to 3.8, which aims to control the effect of the neighbors term.
In FGFCM, the spatial scale factor and the gray-level scale factor
are λs = 3 and λg = 5, respectively. FLICM, KWFLICM and
ARKFCM are free of other parameters. Since FDCM conducts
clustering based on super pixels, the number of super pixels is
set to 800 according to the statement in [18]. Moreover, λ = 0.5
and α = 1.2 are set for FDCM. For FRFCM, the mask image
is the observed image, and a square structuring element of size
3× 3 is used to obtain marker image. In addition, median filter
is used to fuzzy membership filtering, and the filtering window
is also 3× 3. As to WFCM, according to parameter settings
in [14], μ aims to control the impact of the filtered term, thus
is determined experimentally within the range μ ∈ [0.55, 0.65].
Moreover, the 1-level wavelet frame transform is used.

We subsequently discuss the setting of the remaining param-
eters of the SRFCM. In image pixel filtering, we consider the
observed image as the mask image, and use a square of size
3× 3 as the structuring element to obtain the marker image.
Similar to these settings, in the processing of label filtering,
the original label image is taken as the mask image, and the
structuring element of size 3× 3 is adopted again. For the tight
wavelet frame transform, we generally adopt 1-level wavelet
frame transform to test all experiments, since the usage of
higher levels only slightly improves segmentation results while
computational costs are distinctly increased. This conclusion has
been illustrated by the recent work in [14], [23], and [45].

In addition, β is determined by the specific image. By testing
a large number of images, we choose the value of β ∈ [0, 0.06]
experimentally. For selection ofα in (2), we here take an example
to show how to determine the value range of α. We take a set
of its values to test its effect on the performance with the five
images (see Fig. 8) contaminated by 35% SPIN. As shown in
Fig. 7, through the numerical simulation, there are almost no
apparent changes after generally setting α = 2, which implies
that the performance is rather stable. In fact, if α is too large,
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Fig. 7. Segmentation accuracy values with changes of α.

Fig. 8. Five synthetic images with ground truth.

TABLE II
INVESTIGATION OF EACH COMPONENT OF THE PROPOSED ALGORITHM

one will bring high computational cost and reset parameter β.
However, if α is too small, the impact of noise on FCM will
become highly visible. Therefore, we generally set α = 2.

B. Ablation Studies and Analysis

As mentioned previously, there exist four key components
play crucial roles in the proposed algorithm, i.e., image fil-
tering, wavelet frames, sparse regularization, and label filter-
ing. To better exhibit the effectiveness of each component of
the proposed algorithm, we perform the ablation experiments
and analyze their results. We impose 35% SPIN on the image
shown in Fig. 8(a). The number of cluster is set to 4. Specific
experimental details are summarized in Table II. In particular, in
Table II, symbol

√
means that one component in the proposed

algorithm is considered to enable while symbol× represents the
component is absent. The average SA values and iterations are
obtained after the multiple runs of the proposed algorithm.

Obviously, we test 10 different combinations of the four key
components. Without any innovation, the SA result of FCM is
only 93.821%. When each component is considered separately,
the SA results are improved by 3.794%, 1.236%, 0.551%, and
0.504%, respectively. The highest performance is obtained when
all four components are available while the performance is
lowest when any component is absent. We also observe that

Fig. 9. Segmentation results with AWGN (s = 30). The parameters: β1 =
0.02, β2 = 0.03, β3 = 0.04, β4 = 0.03, and β5 = 0.05. From top to bottom:
Noisy images and results of FCM_S1, FCM_S2, EnFCM, FGFCM, FLICM,
KWFLICM, ARKFCM, FDCM, FRFCM, WFCM, and SRFCM.

adding other three components in the absence of image filtering
can only improve the SA results to a certain extent. In addition,
the sparse regularization can significantly reduce iterations of
clustering.

C. Results for Synthetic Images

In this section, we first test the performance of SRFCM and
other algorithms for five synthetic images with size 256× 256
(refer to Fig. 8). The numbers of clusters are 4, 4, 4, 3, and 3,
respectively. These images are with ground truth and corrupted
by AWGN and SPIN of high intensities.

Figs. 9 and 10 illustrate the visual comparison results for
segmenting images (as shown in Fig. 8) contaminated by AWGN
(s = 30) and SPIN (r = 30%), respectively. It is clearly seen that
FCM_S1, FCM_S2, EnFCM, FGFCM, FLICM, and ARKFCM
are not of robustness to AWGN of high levels. Even though
KWFLICM, FDCM, FRFCM, and WFCM can remove AWGN
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Fig. 10. Segmentation results with SPIN (r = 30%). The parameters: β1 =
0.06, β2 = 0.04, β3 = 0.06, β4 = 0.05, and β5 = 0.04. From top to bottom:
Noisy images and results of FCM_S1, FCM_S2, EnFCM, FGFCM, FLICM,
KWFLICM, ARKFCM, FDCM, FRFCM, WFCM, and SRFCM.

sufficiently, they cannot preserve image edges and thus change
image details to different extent. In addition, except for FDCM
and FRFCM, other comparison algorithms cannot remove SPIN
well. Although FDCM and FRFCM remove a large proportion
of SPIN, image edges are obviously changed to some extent.
In comparison with these algorithms, SRFCM truly maintains
clear image edges and acquires better segmentation results. In
the light of visual effects in Figs. 9 and 10, we can conclude
that SRFCM is effective for removing AWGN and SPIN of high
levels and preserving image details.

Table III covers SA results corresponding to Figs. 9 and 10.
The results of SRFCM are highlighted by the bold letter. We
can clearly observe that SA values obtained by SRFCM are
larger than those of other ten algorithms. Note that SA values
of SRFCM are up to 99.997% for the case with AWGN on
Fig. 8(c). In conclusion, other algorithms cannot work well in

TABLE III
SA RESULTS ON FIVE SYNTHETIC IMAGES WITH GROUND TRUTH

Fig. 11. Five synthetic images without ground truth.

presence of noise of high levels, but SRFCM still reveals strong
segmentation ability.

To further expose the performance of the proposed algorithm,
we test five synthetic images without ground truth (refer to
Fig. 11). In all data, we set the number of clusters set to 2. Figs. 12
and 13 show that segmentation effects of eleven algorithms. The
segmentation results demonstrate that SRFCM is superior to
other algorithms. SRFCM removes almost all noise and retains
image contours. Table IV describes EI results for segmenting
five synthetic images with AWGN and SPIN of high intensities.
Compared with other algorithms, we can find that SRFCM can
acquire smaller EI values. Similarly, it is concluded that SRFCM
is of robustness to noise and keep more image details than other
compared algorithms.

D. Results for Medical Images

In this section, we test magnetic resonance images (MRIs)
to illustrate the performance of eleven mentioned algorithms.
These images are borrowed from a public brain database
(BrainWeb).1 We here choose MRIs by T1 modality with slice
thickness of 1mm resolution, 9% noise and 20% intensity non-
uniformity. Five slices in the axial plane with the sequence of 70,
80, 90, 100, and 110, respectively, as shown in the first column
of Fig. 14. Fig. 14 shows the segmentation results for five MRIs.
We set numbers of clusters to all 4. The quantitative comparison
results are given in Table V. As shown in Fig. 14, SRFCM is more

1[Online]. Available: http://www.bic.mni.mcgill.ca/brainweb/
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Fig. 12. Segmentation results with AWGN (s = 30 and β = 0.04). From top
to bottom: Noisy images and results of FCM_S1, FCM_S2, EnFCM, FGFCM,
FLICM, KWFLICM, ARKFCM, FDCM, FRFCM, WFCM, and SRFCM.

effective for noise removal and detail-preservation in MRIs than
other FCM-related algorithms. Table V indicates that SA results
of SRFCM are larger than those of other algorithms. Notice that
SA values of SRFCM come up to 99.156% for the fourth slice
in Fig. 14. On the account of experimental results in Fig. 14 and
Table V, we conclude that SRFCM has a better segmentation
ability for MRIs than other existing algorithms.

E. Results for Color Images

To further illustrate good performance of SRFCM, we test a
collection of Red-Green-Blue (RGB) color images. Generally
speaking, most of improved FCM-related algorithms are weak
for segmenting color images due to difficult acquisition of spatial
information of color images. However, SRFCM overcomes this
drawback. It is easy to extend multivariate MGR to color images
[46]. For the wavelet frame transform, we respectively apply it
in each channel of RGB color images. Thus, the dimensionality
of feature spaces of a color image is three times higher than that
of a gray image. The other steps of color image segmentation are

Fig. 13. Segmentation results with SPIN (r = 30% and β = 0.05). From top
to bottom: Noisy images and results of FCM_S1, FCM_S2, EnFCM, FGFCM,
FLICM, KWFLICM, ARKFCM, FDCM, FRFCM, WFCM, and SRFCM.

TABLE IV
EI RESULTS ON FIVE SYNTHETIC IMAGES WITHOUT GROUND TRUTH
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Fig. 14. Segmentation results on different MRIs (β = 0.04). From left to right: Noisy images, ground truth, and results of FCM_S1, FCM_S2, EnFCM, FGFCM,
FLICM, KWFLICM, ARKFCM, FDCM, FRFCM, WFCM, and SRFCM.

TABLE V
SA RESULTS ON FIVE MRIS

similar to those applied to gray image segmentation. We segment
two sets of color images to illustrate multiphase segmentation
effects of the proposed algorithm.

In the first experiments, we select six color images obtained
from the Berkeley Segmentation Dataset (BSDS300).2 We con-
duct related experiments and the corresponding results are
shown in Fig. 15 and Table VI. We set numbers of clusters of six
images to 2, 2, 2, 3, 2, and 2. As shown in Fig. 15, other compared
algorithms are deficient for retaining true image contours. In
contrast, SRFCM clearly describes accurate image details and
makes clustering results close to object segmentation results.
Table VI shows the corresponding EI values of all algorithms for
segmenting six color images. SRFCM’s EI results are generally
lower than those produced by other algorithms. Therefore, it
is concluded that SRFCM can achieve excellent segmentation
performance for color images.

Besides color images in BSDS300, we also consider real
images, i.e., Global Earth observation data obtained from the
NASA Earth Observation data set.3 There exists unknown noise
in sampled images due to bit errors appearing in satellite mea-
surements. We segment two real images showing sea ice and

2[Online]. Available: https://www2.eecs.berkeley.edu/Research/Projects/
CS/vision/bsds/BSDS300/html/dataset/images.html

3[Online]. Available: http://neo.sci.gsfc.nasa.gov/

Fig. 15. Segmentation results on six color images in BSDS300. The param-
eters: β1 = 0.04, β2 = 0.03, β3 = 0.04, β4 = 0.05, β5 = 0.06, and β6 =
0.05. From top to bottom: Original image and results of FCM_S1, FCM_S2,
EnFCM, FGFCM, FLICM, KWFLICM, ARKFCM, FDCM, FRFCM, WFCM,
and SRFCM.
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TABLE VI
EI RESULTS ON SIX COLOR IMAGES IN BSDS300

Fig. 16. Segmentation results on sea ice and snow extent (β = 0.03). From
(a) to (l): Noisy image and results of FCM_S1, FCM_S2, EnFCM, FGFCM,
FLICM, KWFLICM, ARKFCM, FDCM, FRFCM, WFCM, and SRFCM.

Fig. 17. Segmentation results on chlorophyll concentration (β = 0.04). From
(a) to (l): Noisy image and results of FCM_S1, FCM_S2, EnFCM, FGFCM,
FLICM, KWFLICM, ARKFCM, FDCM, FRFCM, WFCM, and SRFCM.

snow extent and chlorophyll concentration as typically shown
in Fig. 16 and 17. Each image corresponds to a specific scene.
Each scene is randomly shot 50 times from 2000 to 2019. The
mean image of the 50 shots is roughly taken as the ‘reference
(original) image’, with which the EI can be computed. EI results
are summarized in Table VII.

Fig. 16 illustrates the results for segmenting sea ice and snow
extent. The colors on images shown in Fig. 16 represent where
the land and ocean are covered by snow and ice per week (here is
February 7–14, 2015). We set the number of clusters to 4. Fig. 17
shows the segmentation results on chlorophyll concentration.
The colors represent where and how much phytoplankton are
growing over a span of days. The black areas show where
the satellite could not measure phytoplankton. The number of

TABLE VII
EI RESULTS ON TWO REAL IMAGES IN NASA

TABLE VIII
AVERAGE COMPUTATION COSTS (IN SECONDS) ON DIFFERENT IMAGES

clusters is set to 2. As shown in Figs. 16 and 17, the segmentation
results of most of algorithms including FCM_S1, FCM_S2,
EnFCM, FGFCM, FLICM, KWFLICM, ARKFCM, and FDCM
show that they can retain clear edges but cannot sufficiently re-
move unknown noise. Differing from them, FRFCM and WFCM
perform well for noise removal. However, the two algorithms
bring over-smoothing to some extent, thus resulting in several
topology changes, such as merging and splitting. Superior to
other algorithms, SRFCM can not only extensively suppress un-
known noise, but also retain clear contours in images. According
to these practical examples, we can conclude that the above ten
algorithms do not have good performance for preserving object
features and removing noise simultaneously. SRFCM makes up
this drawback successfully and works better than them.

F. Running Time

To compare the practical facets of above algorithms, we show
comparisons of computational costs of above experiments. All
experiments are realized in MATLAB on a laptop with Intel(R)
Xeon(R) W-2133 CPU of (3.60 GHz) and 32.0 GB RAM. The
average computational costs of all algorithms on tested images,
including synthetic images with ground truth, synthetic images
without ground truth, medical images, color images, and real
images, are given in Table VIII. In addition, we also visually
exhibit the difference between average computational costs of
all algorithms in Fig. 18.

As shown in Table VIII and Fig. 18, it is obvious that
KWFLICM is the most time-consuming for gray image segmen-
tation. Moreover, FCM_S1, FCM_S2 and FDCM also exhibits
high computational complexity. FRFCM is the most time-saving
for all experiments due to the usage of gray level histograms.
EnFCM and FGFCM are very efficient. Although the three
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Fig. 18. Average computation costs (in seconds) on different images.

algorithms are faster than the proposed algorithm, their seg-
mentation performance are worse than that of SRFCM. When all
mentioned algorithms are extended to color image segmentation,
they require much more computational time due to the increase
of dimensionality of image data. Especially, computational costs
of FCM_S1, FCM_S2, KWFLICM, and FDCM are extremely
large. EnFCM, FGFCM, FRFCM, and SRFCM are significantly
faster than other algorithms. Compared with EnFCM, FGFCM,
and FRFCM, SRFCM spends a little more time. On account of
its better segmentation effect, this drawback can be tolerated.
Moreover, since SRFCM has acceptable computation cost and
excellent performance, it can be put into many applications.

VI. CONCLUSION

FCM-related algorithms mostly depend on the usage of spatial
information and kernel distance to enhance the robustness of the
conventional FCM algorithm. They usually exhibit high compu-
tational complexity even though they can realize clustering well.
To deal with this issue, we report a sparse regularization-based
FCM algorithm for image segmentation by incorporating MGR
and a tight wavelet frame transform. To make FCM robust, we
first utilize MGR to filter observed images. A wavelet frame
system is employed to form feature spaces of observed and
filtered images. Taking such feature sets as data to be clus-
tered, we invent an improved FCM algorithm in which a sparse
regularization term is introduced into its objective function. To
further enhance segmentation accuracy, we use MGR to filter
the label set generated by clustering. The segmentation effect
of the proposed algorithm is illustrated through a collection of
experiments. Finally, we reach the below crucial conclusions:

1) MGR improves simultaneously the noise-immunity and
retention capacity of image details, which is a key step
before further clustering. This means that MGR introduces
spatial information of images into the objective function
of FCM. It overcomes the shortcoming that different filters
have to be chosen for different types of noise. Therefore,
it maked FCM more robust to different types of noise.
Its usage also makes distribution characteristics of image
pixels adaptive to fuzzy clustering, thus accelerating the
convergence of clustering. It is also used to filter labels in
the last step of the proposed algorithm, thus reducing the
possibility of misclassification.

2) A wavelet frame system is employed to form feature
sets of images, which removes the difficulty of the direct
use of image pixels and makes information in images
sufficiently analyzed and manipulated. In addition, the
proposed algorithm can be regarded as a kernel-based
FCM algorithm when taking tight wavelet frames as a
kernel function.

3) A sparse regularization term is introduced into the ob-
jective function of FCM, which gives rise to the strong
sparsity of the partition matrix generated by FCM. Thus,
it lowers the computational cost of the proposed algorithm.
Moreover, the segmentation effect is slightly improved.

4) The proposed algorithm requires low computational cost.
It has slightly lower efficiency than few FCM-related ones.
Yet its performance offsets this drawback.

5) Numerical results show that the proposed algorithm is
more capable of segmentation than its peers. Hence, it has
more potential in applications.

Numerical results demonstrate sufficiently the effectiveness
and practicability of the proposed algorithm. Nevertheless, there
exist some open issues. For instance, its application areas could
be expanded to image segmentation in non-Euclidean spaces
such as computer networks, 3-D medical imaging and remote
sensing [47], social networks, ecological systems [48], and trans-
portation networks [49]. The automatic selection of numbers
of clusters is one of topics worth pursuing [50]. The last one
is how to choose mask and marker images to achieve better
segmentation results.

APPENDIX

We consider the minimization of the energy function

E =

c∑
i=1

K∑
j=1

ηmij (‖xj − vi‖2 + α‖xj − vi‖2),

subject to

c∑
i=1

ηij = 1, for j = 1, 2, . . . ,K.

We apply the Lagrangian multiplier method to solve the
minimization problem. The Lagrangian function is defined as

LΛ(η,V ) :=

c∑
i=1

K∑
j=1

ηmij dij +

K∑
j=1

λj ·
(

c∑
i=1

ηij − 1

)
, (10)

where Λ = {λj}j=1,2,...,K is a set of Lagrangian multipliers,
and dij = ‖xj − vi‖2 + α‖xj − vi‖2.

First, by fixing V , we minimize (10) with respect to η. Thus,
we have

∂LΛ

∂ηij
= mdijη

m−1
ij + λj = 0.

We obtain

ηij =

(
−λj

m

) 1
m−1

·
(
dij
)− 1

m−1 . (11)
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Based on the constraint
∑c

q=1 ηqj = 1, we get

1 =

c∑
q=1

ηqj =

c∑
q=1

((
−λj

m

) 1
m−1

·
(
dqj
)− 1

m−1

)

=

(
−λj

m

) 1
m−1

·
c∑

q=1

(
dqj
)− 1

m−1 .

Thus, we have(
−λj

m

) 1
m−1

=
1∑c

q=1

(
dqj
)− 1

m−1
. (12)

Substitute (12) into (11), we get

ηij =

(
dij
)− 1

m−1∑c
q=1

(
dqj
)− 1

m−1
.

Next, by fixing η, we minimize (10) in terms of V . Thus, we
have

∂LΛ

∂vi
=

K∑
j=1

(−2) · ηmij · ((xj + αxj)− (vi + αvi)) = 0.

Thus, we have

K∑
j=1

ηmij (xj + αxj) =

K∑
j=1

ηmij (vi + αvi).

The optimal vi is represented as

vi=

∑K
j=1 η

m
ij (xj + αxj)

(1 + α)
∑K

j=1 η
m
ij

.
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