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Abstract—In recent years, image processing in a Euclidean
domain has been well studied. Practical problems in computer
vision and geometric modeling involve image data defined in
irregular domains, which can be modeled by huge graphs. In
this paper, a wavelet frame-based fuzzy C-means (FCM) algo-
rithm for segmenting images on graphs is presented. To enhance
its robustness, images on graphs are first filtered by using spatial
information. Since a real image usually exhibits sparse approx-
imation under a tight wavelet frame system, feature spaces of
images on graphs can be obtained. Combining the original and
filtered feature sets, this paper uses the FCM algorithm for seg-
mentation of images on graphs contaminated by noise of different
intensities. Finally, some supporting numerical experiments and
comparison with other FCM-related algorithms are provided.
Experimental results reported for synthetic and real images on
graphs demonstrate that the proposed algorithm is effective and
efficient, and has a better ability for segmentation of images on
graphs than other improved FCM algorithms existing in the lit-
erature. The approach can effectively remove noise and retain
feature details of images on graphs. It offers a new avenue for
segmenting images in irregular domains.

Index Terms—Fuzzy C-means (FCM) algorithm, image on
graphs, image segmentation, spatial information, tight wavelet
frames.
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I. INTRODUCTION

IN RECENT years, image segmentation has been play-
ing an increasing important role in computer vision and

geometric modeling. It aims to divide an image into a
number of nonoverlapping areas that have the same charac-
teristics, such as gray level, color, texture, and tone. Over
the past two decades, image segmentation in a Euclidean
space has received much attention, resulting in a series
of achievements [1]–[4], [11], [12], [22], [24], [30]. However,
as graphs can be flexibly represented in either Euclidean
domain or irregular domains [8], [43], researchers have
recently started to analyze and manipulate structured data
that are composed of sampled real-valued functions defined
on graphs [16], [42], [43], [45]. In practical applications, in
general, graphs can be modeled as a certain discretization or
random sample from some Riemannian manifolds [39]. Many
structured datasets, like point clouds and 3-D mesh surfaces,
can be considered as scalar functions defined on vertices of
graphs. Under such circumstances, it becomes an important
topic to design efficient computing methods for addressing
image processing problems defined on graphs.

Many efforts have been made to solve image processing
problems defined on graphs [16], [34], [43], [45]. For instance,
Niyobuhungiro and Setterqvist [34] established an analog of
the Rudin–Osher–Fatemi (ROF) model [37] defined on graphs
and proposed a new algorithm to solve this model. Dong [16]
presented a fast discrete tight wavelet frame transform in a
graph domain, which is applied to many practical problems,
such as graph data denoising and semisupervised clustering.
More recently, Wang and Yang [43] introduced a variation
method with tight wavelet frames to remove Poisson noise
(PN) in images on graphs.

Clustering has been successfully applied to image segmen-
tation in a Euclidean space. In the past, a large number of
clustering-based algorithms realized for image segmentation
were presented [20], [22], [24]. Many traditional clustering-
based methods, like density-based methods, hierarchical meth-
ods, and the K-means algorithm, assign pixels exclusively to a
single cluster. Differing them, a fuzzy C-means (FCM) algo-
rithm allows pixels to have varying degrees of membership
to multiple clusters. Thus, it is practically compelling with a
considerable number of advantages.

The main contribution of this paper is a wavelet frame-
based FCM algorithm for segmenting images on graphs, so as
to improve the effectiveness of the original FCM algorithm.
Its overview is shown in Fig. 1. To enhance the robustness
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Fig. 1. Wavelet frame-based FCM algorithm for segmenting images on
graphs: an overview.

of FCM, observed images on graphs are first filtered by using
available spatial information. Then, a tight wavelet frame
system is used to obtain high and low frequency information of
the original images and filtered images on graphs, thus forming
feature spaces of images. Taking these spaces as data pattern-
ing, FCM is utilized to segment images on graphs. Finally,
the segmented images are reconstructed by the wavelet frame
transform on graphs.

The essence of the underlying idea that the original space
(time domain) is transformed to a new feature space (frequency
domain) by a nonlinear mapping (wavelet frame transform).
The new feature space has an enhanced discriminatory capa-
bility to analyze and manipulate image data on graphs.
Traditionally, image pixel values are considered to be data
of FCM. In contrast, taking the nature of tight wavelet frames
on graphs as a starting point, this paper utilizes tight wavelet
frames to decompose image pixels into feature spaces, that
is, high and low frequency information, which means that
underlying image features and noise can be found. We antic-
ipate that FCM with feature spaces can not only remove
noise but also segment images on graphs more accurately.
In other words, the proposed algorithm is actually a kernel-
based FCM algorithm [9], [23]–[25], [38], [47]. The tight
wavelet frames can be regarded as a kernel function. In this
paper, we develop this suitable kernel-based FCM algorithm,
which is designed for the problems of segmenting images
on graphs.

This paper is organized as follows. Section II reviews dif-
ferent image segmentation techniques, especially conceptual
developments and application studies of FCM, and makes
some comments upon the state-of-the-art. Section III briefly
introduces the wavelet frame transform on graphs and FCM.
Section IV formulates the proposed algorithm in detail.
In Section V, experimental results on synthetic and real
images on graphs are provided. The conclusions are drawn in
Section VI.

II. LITERATURE REVIEW

In this section, we briefly review different image seg-
mentation techniques. Image segmentation techniques are
broadly classified into four categories, viz., intensity thresh-
olding technique [41], edge-based approach [35], region-based
approach [21], and classification-based approach [44], [47].

In intensity thresholding techniques [41], the adjacent pixels
belong to the same class, which is based on the determination
of a certain threshold level of an image. Once intensity val-
ues of pixels exceed the threshold value, they are assigned
to one segment and the remaining to the other. Due to the
lack of optimal threshold, this technique could fail. The edge-
based approaches [35] are generally related to edge detection.
By using some edge detection algorithms, interrupted con-
tour lines around an object of interest are first generated.
Based on some similarity criteria, these lines are added to
detect the object of region of interest. The main drawback
of the edge-based approaches is computationally expensive
post-processing for the acquisition of hole free representation
of the objects. The region-based approaches [21] develop the
thresholding techniques by combining an intensity similarity
measure to obtain connectivity of pixels. A seed point (pixel)
is first selected for each region. Based on homogeneity crite-
ria, pixels in the neighborhood are added to the regions, which
results in connected regions. Different regions represent dif-
ferent visual features of images. However, they are sensitive
to noise.

The classification-based approaches [44], [47] have been
broadly used in image segmentation. Among these approaches,
the FCM algorithm is more effective than others with con-
siderable amount of benefits. In 1973, Dunn [19] proposed
the FCM algorithm. In 1981, it was further improved by
Bezdek [6]. Over the past three decades, researchers have real-
ized a series of improvements with respect to its conceptual
developments and applications [3]–[5], [28]–[30], [44], [47].
From the previous work, we can conclude that conventional
FCM is sensitive to noise, although it can take effects on most
noise-free images. In order to increase its robustness, many
improved FCM-related algorithms have been proposed [1], [2],
[9], [11], [12], [20], [22], [24], [26], [27], [32], [38], [40], [47].

For instance, Ahmed et al. [2] proposed a novel algo-
rithm called FCM_S that incorporates spatial constraints to
modify the objective function of the conventional FCM algo-
rithm. Although FCM_S improves the segmentation ability,
it is very time consuming for each iteration. To improve its
computational efficiency, Chen and Zhang [12] introduced an
improved one that formulates two low-complexity variants of
FCM_S by computing the mean or median filtered images
in advance. Szilagyi et al. [40] reported an enhanced FCM
algorithm (EnFCM). The original image pixels and their neigh-
borhood averages are first employed to generate a nonlinearly
weighted sum image. Then, the summed image is segmented
by using FCM. Thus, EnFCM is not very time consuming. On
the basis of EnFCM, Cai et al. [11] proposed a fast general-
ized FCM algorithm. Compared with EnFCM, it innovatively
measures the similarity between the original image pixels
and their spatial information so as to generate a nonlinearly
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weighted sum image. Moreover, its computational efficiency
is high.

To further enhance the effectiveness of FCM, kernel-based
FCM algorithms have received much attention, aiming to make
FCM robust to noise by incorporating the kernel distance mea-
sure to the objective function [9], [23]–[25], [38], [47]. Based
on this advantage, Gong et al. [24] proposed a kernel metric-
based FCM algorithm, which depends on local information
to assess the damping extent of neighborhood of pixels. It
gains successful applications to segment artificial and real
images. Elazab et al. [20] presented an FCM framework
that exploits the heterogeneity of grayscales in the neigh-
borhood for local contextual information and incorporates
the Gaussian radial basis kernel function into the objective
function.

Recently, Adhikari et al. [1] improved the FCM algorithm
by incorporating conditional variables and local information
into membership functions. It is successfully applied to seg-
ment magnetic resonance imaging (MRI) brain images. More
recently, Gharieb et al. [22] introduced an improved FCM
algorithm based on local membership and locally smoothed
data incorporating Kullback–Leibler divergence for image
segmentation. Compared with the previous approaches, its
main motivation is to incorporate spatial information into the
hard C-means algorithm by spatially smoothing membership
functions of pixels in the pixel vicinity.

Through the literature review, it can be concluded that the
existing algorithms mostly take the spatial information in an
image and nonrobust Euclidean distance into account and are
solely based on the distribution of image data. Their drawback
is that they fail to take the feature space distribution of image
data into consideration during the formulation of clusters. Both
image features and noise belong to high-frequency information
of image data. It is not difficult to consider high and low
frequencies as features of image data. There are many ways
to acquire such frequency information of image pixels, such
as Fourier transform, orthonormal wavelets [14], translation-
invariant wavelets [13], and framelets [15], [36]. Unlike the
above ways, tight wavelet frames can provide redundant rep-
resentations of images [18]. This redundancy enables tight
wavelet frames to be flexibly applied to various areas, such
as image denoising, image restoration, and surface recon-
struction [10], [16]–[18], [43], [45]. Motivated by the above
analysis, this paper employs tight wavelet frames to form fea-
ture spaces of image data defined on graphs. FCM is applied to
segment these feature spaces for increasing its robustness. The
segmented images on graphs are reconstructed by the wavelet
frame transform on graphs. Numerical experiments demon-
strate that the approach can effectively remove noise and retain
feature details in images on graphs, which means that it has
a wider range of applications than other image segmentation
algorithms.

III. PRELIMINARIES

In order to enhance the understanding and analysis of
graphs and image data defined on graphs, spectral graph
theory [16], [39] is reviewed.

A graph G = (V,E, ω) consists of a vertex set V :=
{vk : k = 0, . . . ,K− 1}, an edge set E ⊆ V ×V , and a weight
function ω : E �→ R

+ that represents the distance between two
adjacent vertices. According to [16], the following expression
is commonly used:

ω(vk, vk′) := e−‖vk−vk′ ‖2
/ρ, ρ > 0 (1)

where vk and vk′ denote two arbitrary vertices in V
and ‖ · ‖ denotes their Euclidean distance. Here, vk =
(vk(1), vk(2), vk(3)) represents the (x, y, z)-coordinates of ver-
tex vk, and the distance between vk and vk′ is formulated as

‖vk − vk′ ‖ =
√∑3

i=1 [vk(i)− vk′(i)]2.
The adjacency matrix � for graph G is a K-order sparse

matrix, of which entry φk,k′ is defined as follows:

φk,k′ =
{
ω(vk, vk′) if an edge in E connects vk and vk′
0 otherwise.

(2)

Let ψ[k] :=∑
k′ φk,k′ be the degree of each vertex vk. Here,

ψ[k] denotes the sum of all the weights between vk and its
neighbors. All the degrees constitute a degree matrix � that
is described as

� := diag{ψ[1], ψ[2], . . . , ψ[K]}. (3)

Then, the non-normalized graph Laplacian L can be
formulated as

L := � −�.
By carrying out the eigenvalue decomposition for L, the set

of K pairs of its eigenvalues and eigenvectors can be obtained,
which is formulated as {(λk, uk)}K−1

k=0 . As L is a real symmetric
matrix, it can be acquired that λK−1 ≥ λK−2 · · · ≥ λ2 ≥ λ1 >

λ0 = 0. Here, for all of the functions on G, the eigenvectors
form an orthonormal basis as follows:

〈uk, uk′ 〉 =
K−1∑
z=0

uk[z]uk′[z] = δk,k′ .

Let us define a real-valued function f : V �→ R. Then,
( f (v1), f (v2), . . . , f (vK)) can be viewed as a K-dimensional
vector in R

K , where f (vk) defines a coordinate. In practical
applications, it is also represented as a specific object such as
an image. Moreover, we have its Fourier transform

f̂ [k] :=
K−1∑
z=0

f [z]uk[z], k = 0, 1, . . . ,K − 1.

A. Wavelet Frame Transform on Graphs

Given a graph G := (V,E, ω) and an image function
f : V �→ R on G. For k = 0, 1, . . . ,K − 1, {λk} denotes
the set of the eigenvalues of graph Laplacian L. The discrete
tight wavelet frame transform of f can be formulated. More
details can be found in [16].

For p = 0, 1, . . . , r, {ap} denotes a set of masks. âp denotes
the Fourier series of ap. As ap is finitely supported, âp can be
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described by a trigonometric polynomial. Let â∗p be the com-
plex conjugate of âp. The (undecimated) L-level tight wavelet
frame decomposition W is defined as

Wf := {
Wp,
f : p = 0, 1, . . . , r, 
 = 1, 2, . . . ,L

}
(4)

where, for 
 = 1

Ŵp,
f [k] := â∗p
(
2−Nλk

)̂
f [k]

and for 
 ∈ {2, 3, . . . ,L}
Ŵp,
f [k] := â∗p

(
2−N+
−1λk

)
â∗0

(
2−N+
−2λk

)
· · · â∗0

(
2−Nλk

)̂
f [k].

Here, p denotes the band of the transform, 
 denotes the
level of the transform, and N is a positive integer and denotes
the dilation scale, which is selected such that 2N−1π <

λK−1 ≤ 2Nπ .
For p = 0, 1, . . . , r and 
 = 1, 2, . . . ,L, let χ := Wf :=
{χp,
} with χp,
 := Wp,
f . For 
 = L,L − 1, . . . , 1, the tight
wavelet frame reconstruction WTχ is defined by the following
iterative procedure:

χ̂0,
−1[k] =
r∑

p=0

âp

(
2−N+
−1λk

)
χ̂p,
[k]

where χ0,0 := WTχ is the reconstructed data from χ .
According to [16, Th. 3.1], we can obtain WTWf = f , which
means that WTW is an identity operation.

B. FCM Algorithm

We denote images as vectors in R
N , where N equals to the

total number of pixels. Thus, we can formulate an image as
X = {x1, x2, . . . , xN} ⊂ R

N , FCM splits it into c clusters by
solving the minimization problem with the following objective
function:

J(H, y) =
N∑

j=1

c∑
i=1

hm
ij

∥∥xj − yi

∥∥2

s.t. ∀j ∈ {1, 2, . . . ,N} :
c∑

i=1

hij = 1

∀j ∈ {1, 2, . . . ,N}, ∀i ∈ {1, 2, . . . , c} : hij ∈ [0, 1]

where H = [hij]c×N is a partition matrix, m is a fuzziness
coefficient (m > 1), c is the number of clusters, and ‖ · ‖
denotes the Euclidean distance. The iterative updates of the
partition matrix and prototypes are realized as follows [7]:

hij =
(∥∥xj − yi

∥∥2
)− 1

m−1

∑c
q=1

(∥∥xj − yq

∥∥2
)− 1

m−1

and

yi =
∑N

j=1 hm
ij xj∑N

j=1 hm
ij

.

Once the termination ‖y(t)−y(t−1)‖ < ε has been met, FCM
stops. Here, ε denotes a positive threshold, t is an iteration
count of the algorithm.

Fig. 2. Graph and its structure.

IV. METHODOLOGY

A. Filtering Images on Graphs

Consider a graph G := (V,E, ω) and an image function
f : V �→ R on G. For an image, there exists very high
correlation among image pixels. Thus, spatial information
should be taken into account for image segmentation. In other
words, since an arbitrary image datum fi on vertex vi and
its neighbors { f 1

i , f 2
i , . . . , f 6

i } have similar membership, cen-
ter fi can be filtered by image data on neighboring vertices,
which can enhance the robustness of FCM. fi and its neighbors
{ f 1

i , f 2
i , . . . , f 6

i } are shown in Fig. 2.
Formally speaking, a filtered image f can be formulated as

f = �−1(�f ) (5)

where � and � are defined in (2) and (3), respectively.

B. Constructing Feature Spaces of Images on Graphs

In the previous section, we have mostly discussed how to
filter image data on graphs by using spatial information. In
this section, we introduce the process of utilizing tight wavelet
frames to construct feature spaces of image data on graph.

Before introducing the construction process, we report on
an effective way to enhance the computational efficiency of
wavelet frame transform on graphs. As mentioned above,
wavelet frame transform involves the eigenvalue decomposi-
tion of the graph Laplacian of a graph. In practical applica-
tions, it is very challenging to compute all eigenvalues of the
graph Laplacian of a large graph. To overcome this problem,
Chebyshev polynomials [33] can be employed to approximate
the masks of a tight wavelet frame system. In this case, we do
not have to calculate all eigenvalues of the graph Laplacian.
Moreover, for p = 0, 1, . . . , r, mask ap is a finitely supported
sequence. Thus, a low-degree Chebyshev polynomial can be
used to accurately approximate âp described by a trigonomet-
ric polynomial. For ξ ∈ [0, π ], the approximation of mask
âp(ξ) is formulated as

âp(ξ) ≈ T n
p (ξ) =

1

2
cp,0 +

n−1∑
ζ=1

cp,ζTζ (ξ)

where

cp,ζ = 2

π

∫ π

0
cos(ζ θ )̂ap

(π
2
(cos(θ)+ 1)

)
dθ
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and

Tζ (ξ) =
⎧
⎨
⎩

1 ζ = 0
ξ−π/2
π/2 ζ = 1

4
π
(ξ − π/2)Tζ−1(ξ)− Tζ−2(ξ) ζ = 2, 3, . . .

The eigenvalue decomposition of L is reformulated as L =
U�UT , where � := diag{λ0, λ1, . . . , λK−1} and U contains a
group of eigenvectors. Thus, the wavelet frame transform (4)
can be represented in the matrix form expressed in the time
domain. For 
 = 1

Wp,
f := Uâ∗p
(
2−N�

)
UTf

and for 
 ∈ {2, 3, . . . ,L}
Wp,
f := Uâ∗p

(
2−N+
−1�

)
â∗0

(
2−N+
−2�

)
· · · â∗0

(
2−N�

)
UT f

where â∗p(ϑ�) := diag{̂a∗p(ϑλ0), â∗p(ϑλ1), . . . , â∗p(ϑλK−1)}.
If âp is substituted with polynomial T n

p , then for 
 = 1

Uâ∗p
(
2−N�

)
UTf ≈ UT n∗

p

(
2−N�

)
UTf

= T n∗
p

(
2−NU�UT)

f = T n∗
p

(
2−NL

)
f (6)

and for 
 ∈ {2, 3, . . . ,L}
Uâ∗p

(
2−N+
−1�

)
â∗0

(
2−N+
−2�

)
· · · â∗0(2−N�)UTf

≈ T n∗
p

(
2−N+
−1L

)
T n∗

0

(
2−N+
−2L

)
· · · T n∗

0

(
2−NL

)
f .

(7)

To compute (6) and (7), only matrix–vector multiplications
are involved, which are derived from the iterative definition
of the Chebyshev polynomial. Thus, the computation cost is
very low. Moreover, the wavelet frame reconstruction WTχ

can also be approximated in a similar way.
According to [36] and [46], the piecewise linear B-spline

tight frame system can provide a simple explicit expression to
give redundant representations of images, which offers more
adaptability to noise. Thus, we choose this system. Formally
speaking, the system is formulated as

â0(ξ) = cos2(ξ/2), â1(ξ) = 1√
2

sin(ξ), â2(ξ) = sin2(ξ/2).

Once tight frame system is determined, we can utilize tight
wavelet frames to form feature spaces of image data on graphs,
that is, X =Wf and X =Wf , where X = {x1, x2, . . . , xN} is
the set of feature vectors associated with the image function
f , X = {x1, x2, . . . , xN} is that with filtered image function
f obtained via (5) and W is the L-level tight wavelet frame
decomposition whose detailed computation is shown in (6)
and (7).

In order to visually judge the feature (edge) extraction
ability of tight wavelet frames, we here show a numerical
example, refer to Fig. 3. As most images have some geo-
metrical structures, the edges of images are not randomly
distributed. Fig. 3 illustrates the map of image edges detected
by tight wavelet frames. Clearly, by using tight wavelet frames,
image edges are spatially described and correlated. Motivated
by the performance of tight wavelet frames, this paper aims
at investigating a wavelet frame-based FCM algorithm which
can segment images defined in nonflat domains.

Fig. 3. Illustration of the map of image edges detected by tight wavelet
frames. (a) Original grayscale image. (b) Original binary image. (c) Image f
on a sphere. (d) Binary image of W f .

Notice that both X and X describe feature spaces between
the observed image data and the filtered image data on graphs,
that is, high and low frequency information, which means that
underlying image features (edges) and noise can be found.
However, the dimensionality of image data increases while
forming feature spaces. Due to complexity of data space, the
implementation of FCM becomes challenging.

C. Tight Wavelet Frames-Based FCM Algorithm

In this section, combining feature spaces between the
observed image f and the filtered image f , that is, X =Wf =
{x1, x2, . . . , xN} and X = Wf = {x1, x2, . . . , xN}, we pro-
pose a wavelet frame-based FCM algorithm by solving the
minimization problem with the following objective function:

J(H, y) =
N∑

j=1

c∑
i=1

hm
ij

(∥∥xj − yi

∥∥2 + μ∥∥xj − yi

∥∥2
)

s.t. ∀j ∈ {1, 2, . . . ,N} :
c∑

i=1

hij = 1

∀j ∈ {1, 2, . . . ,N}, ∀i ∈ {1, 2, . . . , c} : hij ∈ [0, 1] (8)

where objective function J(H, y) in (8) for image segmentation
in a Euclidean space was first introduced in [12]. Parameter
μ is used to control the effect of the neighboring term.

Taking into account (8), we have the following iterative
solutions:

hij =
(∥∥xj − yi

∥∥2 + μ∥∥xj − yi

∥∥2
)− 1

m−1

∑c
q=1

(∥∥xj − yq

∥∥2 + μ∥∥xj − yq

∥∥2
)− 1

m−1

(9)

and

yi =
∑N

j=1 hm
ij

(
xj + μxj

)

(1+ μ)∑N
j=1 hm

ij

. (10)

With t iterations, once ‖y(t) − y(t−1)‖ < ε is met, the
proposed algorithm stops. The segmentation computation pro-
cess is realized in Algorithm 1.
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Algorithm 1 Tight Wavelet Frames-Based FCM Algorithm
Input: Image f , fuzziness coefficient m, number of clusters

c, and threshold ε.
Output: Segmented image f̃ , prototypes yi, and partition

matrix H.
1: Calculate filtered image f via (5)
2: Calculate Wf and Wf to obtain feature sets X and X via

(6) and (7)
3: Initialize randomly prototypes y(0)i .
4: t← 1
5: repeat
6: Calculate partition matrix H(t) using prototypes y(t−1)

i
via (9)

7: Update the prototypes to obtain y(t)i by using partition
matrix H(t) via (10)

8: t← t + 1
9: until ‖y(t) − y(t−1)‖ < ε

10: return prototypes yi and partition matrix H
11: Calculate segmented image f̃ by using wavelet frame

reconstruction WT

To quantitatively show the segmentation ability of the
proposed algorithm, we adopt the segmentation accuracy as
an assessment criterion, that is

SA =
c∑

i=1

|Bi ∩ Ci|∑c
j=1

∣∣Cj
∣∣ (11)

where Ci denotes the set of the ith cluster in the ground-truth
segmented image data on graphs, Bi indicates the set of image
data belonging to the ith cluster found by the test algorithm,
and | · | stands for the cardinality of the set.

V. EXPERIMENTAL STUDY

In the previous section, we have discussed the methodol-
ogy for segmenting images on graphs. In this section, some
supporting numerical experiments are provided to test the seg-
mentation quality of the proposed algorithm. In Section II, we
mention many improved FCM-related algorithms. Especially,
Gong et al. [24] presented a kernel metric-based FCM algo-
rithm to enhance FCM’s robustness. Adhikari et al. [1]
proposed a conditional FCM algorithm and successfully
apply it to segment MRI brain images. More recently,
Gharieb et al. [22] proposed an improved FCM algorithm
based on local membership and locally smoothed data incor-
porating Kullback–Leibler divergence for image segmentation.
For the sake of concise exposition, these algorithms men-
tioned above and the proposed algorithm are abbreviated as
“α-FCM,” “β-FCM,” “γ -FCM,” and “W-FCM,” respectively.
We make comparisons between W-FCM and other algorithms,
α-FCM, β-FCM, and γ -FCM. The comparisons are done both
visually and quantitatively. All experiments are implemented
in MATLAB on a laptop with Intel Core i3 (2.10 GHz) CPU
and 6.0-GB RAM.

For parameter setting, we experimentally set n = 8 in (6),
which means that mask âp is approximated by the Chebyshev
polynomials of degree 7. In addition, we choose parameter

Fig. 4. Three images (first row), mapped onto a unit sphere (second row).
From left to right: first image, second image, and third image.

Fig. 5. Segmentation accuracy values with changes of μ.

ρ = 10 in (1). In (8), we choose the degree of fuzziness
m = 2. In Algorithm 1, we set the threshold ε = 1× 10−6.

A. Results for Synthetic Images on Graphs

The above algorithms are employed to test synthetic images
on graphs. As shown in Fig. 4, we first map three images
onto a unit sphere to generate image data defined on graphs.
The numbers of clusters are 4, 4, and 5, respectively. Here,
we select the unit sphere with 40 962 sampled vertices as the
graph from which one can visually judge denoising quality
easily. Noisy-free images are rescaled to an intensity ranging
from 0 to 255. We use the MATLAB function “imnoise” to
add additive white Gaussian noise (AWGN) and salt and pep-
per impulse noise (SPIN) of different intensities. The PN is
added by using the MATLAB function “poissrnd.” Moreover,
we also generate mixed Poisson–Gaussian noise (MPGN) and
mixed Gaussian and impulse noise (MGIN). We perform the
segmentation with the proposed and other algorithms obtain
the results as shown in Figs. 7–9. In addition, we quantitatively
show their segmentation performances in Tables I and II in
terms of the segmentation accuracy defined by (11). According
to [12], μ is determined experimentally with μ ∈ [0.55, 0.65].
For selection of μ in (8), we take a set of its values to test
its effect on the performance with the three images on the
unit sphere contaminated by 20% SPIN. As shown in Fig. 5,
for the three images, there are no apparent changes by setting
μ = 0.65, which implies that the performance is rather sta-
ble. Here, as an example, we consider the third image on the
unit sphere contaminated by AWGN of different intensities
(standard deviations) to test segmentation accuracy vis-à-vis
changes of tight wavelet frame transform level 
. As shown
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Fig. 6. Segmentation accuracy values with changes of 
.

Fig. 7. Segmentation results with AWGN (standard deviation = 20,
μ1 = 0.55, μ2 = 0.60, and μ3 = 0.65). From left to right: noisy images
on graphs, and results with α-FCM, β-FCM, γ -FCM, and W-FCM.

in Fig. 6, it is concluded that we just need to use 1-level
wavelet frame transformation in all experiments, since the use
of higher decomposition levels only slightly enhances the seg-
mentation performance while the computational efficiency is
significantly reduced.

Fig. 7 shows the segmentation results of these four algo-
rithms in the presence of AWGN (standard deviation = 20). On
the one hand, it is not difficult to find that the denoising results
of α-FCM and β-FCM are unsatisfactory. Particularly, α-FCM
has bad performance while denoising AWGN. Visually, as
γ -FCM removes a large proportion of noise, it is superior to
α-FCM and β-FCM. However, γ -FCM cannot remove noise
and preserve image features completely. On the other hand,
W-FCM not only has good performance in the presence of
AWGN but also retain much more image features than the
others.

Fig. 8 illustrates the segmentation results of these four algo-
rithms in the presence of SPIN (density = 20%). The results
of α-FCM show that it cannot completely remove noise in
images, but keep clear edges. Similarly, the denoising results
of β-FCM are unsatisfactory. Visually, compared with α-FCM
and β-FCM, γ -FCM has better performance to remove noise,
since it can accurately estimate the relationship among neigh-
bors. Unfortunately, it changes image edges. We can conclude
that the above three algorithms cannot simultaneously remove
noise and retain image feature details. W-FCM overcomes this
drawback and performs better than the others.

Fig. 9 presents the segmentation results of these four algo-
rithms in the presence of PN. Visually, although α-FCM
removes a large proportion of noise, the results are unsatisfac-
tory. Compared with α-FCM, both β-FCM and γ -FCM have

Fig. 8. Segmentation results with SPIN (density = 20%, μ1 = 0.55,
μ2 = 0.60, and μ3 = 0.65). From left to right: noisy images on graphs, and
results with α-FCM, β-FCM, γ -FCM, and W-FCM.

Fig. 9. Segmentation results with PN (μ1 = 0.55, μ2 = 0.60, and
μ3 = 0.65). From left to right: noisy images on graphs, and results with
α-FCM, β-FCM, γ -FCM, and W-FCM.

Fig. 10. Segmentation accuracy results of the third image on a synthetic
graph (μ = 0.65). (a) Standard deviations of AWGN. (b) Densities of
SPIN. (c) Proposed and other algorithms versus AWGN standard deviations.
(d) Proposed and other algorithms versus SPIN densities.

better performance to remove noise. However, W-FCM retains
more image feature details than the other three algorithms.

Fig. 10(a) and (b) gives the changing curves of segmentation
accuracy values of these four algorithms in the presence of
AWGN and SPIN of different intensities, respectively. The
range of AWGN levels is from 5 to 40. The range of SPIN
levels is from 5% to 50%. In multiple experiments, we set μ
to 0.65. It is obviously seen that the segmentation accuracy
values of W-FCM are greater than those of other algorithms
in the presence of different noise intensities. Fig. 10(c) and (d)
provides their changing curves of the corresponding difference
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TABLE I
SEGMENTATION ACCURACY VALUES (%) ON DIFFERENT IMAGES

WITH DIFFERENT LEVELS OF NOISE

TABLE II
SEGMENTATION ACCURACY VALUES (%) ON

DIFFERENT IMAGES WITH MIXED NOISES

values of segmentation accuracy. The difference values come
up to the maxima when the image is corrupted by 30 AWGN or
35% SPIN. Experimental results show that W-FCM has higher
adaptability to noise and a better performance for segmentation
of images on graphs than other FCM-related algorithms.

Table I shows segmentation accuracy values of four algo-
rithms mentioned above in the presence of AWGN, SPIN, and
PN. AWGN levels are 10, 20, and 30. SPIN levels are 10%,
20%, and 30%. It is obviously seen that SA values of W-FCM
are greater than those of other algorithms in the presence of
noise with varying intensities. Notice that the segmentation
accuracy value of W-FCM comes up to 99.800% for the case
with 10% SPIN on the first image.

Table II includes segmentation accuracy achieved in the
presence of mixed noises of different intensities. The two
most commonly used types of mixed noises are MPGN and
MGIN. The MPGN levels are 10, 20, and 30. The MGIN lev-
els are 10%, 20%, and 30% with fixed ten AWGN. Clearly, the
segmentation accuracy of W-FCM is greater than those pro-
duced by the others alternatives. Notice that the segmentation

Fig. 11. Segmentation results with AWGN (standard deviation = 20). From
left to right: noisy-free images on graphs, and results with α-FCM, β-FCM,
γ -FCM, and W-FCM.

Fig. 12. Segmentation results with SPIN (density = 20%). From left to right:
noisy-free images on graphs, and results with α-FCM, β-FCM, γ -FCM, and
W-FCM.

accuracy value of W-FCM comes up to 99.240% for the case
with ten MPGN on the third image.

For demonstration of multiphase image segmentation, we
also consider five publicly available graphs. These graphs are
obtained from “http://3dmdb.com/.” We map the third image
onto the graphs to generate image data on graphs. The numbers
of clusters are all 5. As cluster c decreases, the percentage
of misclassified image data is going to raise. When we set
c > 5, the percentage of misclassified image data tends to be
stable. Similarly, we also test the performance of the same
four algorithms for segmenting images on graphs corrupted
by AWGN, SPIN, PN, and mixed noises, both visually and
quantitatively.

Fig. 11 illustrates the segmentation results in the pres-
ence of AWGN (standard deviation = 20). The results show
that W-FCM can remove much more noise and preserve
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Fig. 13. Segmentation results with PN. From left to right: noisy-free images
on graphs, and results with α-FCM, β-FCM, γ -FCM, and W-FCM.

TABLE III
SEGMENTATION ACCURACY VALUES (%) ON DIFFERENT

GRAPHS WITH DIFFERENT LEVELS OF NOISE

much clearer edges than other algorithms. Similarly, Fig. 12
shows the segmentation results of these four algorithms in the
presence of SPIN (density = 20%). Fig. 13 presents the seg-
mentation results of these four algorithms in the presence of
PN. W-FCM has a better segmentation ability than the others.
Tables III and IV quantitatively show segmentation accuracy
values of four algorithms mentioned above in the presence of
AWGN, SPIN, PN, and mixed noises. Clearly, segmentation

TABLE IV
SEGMENTATION ACCURACY VALUES (%) ON DIFFERENT

GRAPHS WITH MIXED NOISES

accuracy values of W-FCM are greater than those of the oth-
ers. Notice that the segmentation accuracy value of W-FCM
comes up to 99.669% with 10% SPIN on graph “bunny.”

B. Results for Real Images on Graphs

In the following experiments, we consider publicly avail-
able images on graphs, that is, Global Earth observation
data. Such data can be interpreted as images given on a
sphere, which are borrowed from the NASA Earth Observation
dataset: http://neo.sci.gsfc.nasa.gov/. Sampled images data
contain unknown noise. For the segmentation, we use the RGB
color space. To demonstrate multiphase image segmentation,
we segment two groups of images on graphs showing both out-
going longwave radiation and sea ice and snow extent, refer
to Figs. 14 and 15.

Fig. 14 shows the results of segmenting images showing
outgoing longwave radiation. The colors show the amount of
outgoing longwave radiation leaving earth’s atmosphere per
month (from top to bottom: March, June, September, and
December 2018). Bright yellow and orange indicate greater
heat emission (around 250–350 W/m2), purple and blue indi-
cate intermediate emissions (around 150–250 W/m2), and
white shows little or no heat emission (around 85–150 W/m2,
negligible). Thus, we set the number of clusters to 2. The
segmentation results of β-FCM and γ -FCM show that the
two algorithms cannot completely remove noise in images, but
keep clear edges. On the contrary, the segmentation results of
α-FCM indicate that several topology changes (splitting and
merging) occur during the segmentation. However, W-FCM
can not only remove noise but also retain topological edges.

Fig. 15 illustrates the segmentation results with respect
to sea ice and snow extent. The colors on this collection
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Fig. 14. Segmentation results of outgoing longwave radiation data
(μ = 0.60). From left to right: noisy images on graphs, and results with
α-FCM, β-FCM, γ -FCM, and W-FCM. From top to bottom: March, June,
September, and December 2018.

Fig. 15. Segmentation results of sea ice and snow extent data (μ = 0.65).
From left to right: noisy images on graphs, and results with α-FCM, β-FCM,
γ -FCM, and W-FCM. From top to bottom: February 7–14, March 7–14,
April 4–11, and May 2–9, 2015.

of images show where the land and ocean are covered by
snow and ice per week (from top to bottom: February 7–14,
March 7–14, April 4–11, and May 2–9, 2015). White
shows where earth’s lands are covered by snow. Light blue
shows where earth’s oceans are covered by ice. Green shows
lands with no snow cover and black areas show oceans
with no ice cover. Thus, we set the number of clusters
to 4. For other three FCM-related algorithms, we observe
that the noise is well smoothed out. However, these three
algorithms change the topological boundaries more or less,
informing weak edges. For these practical examples, it is
concluded that the above three algorithms cannot simul-
taneously remove noise and retain image feature details.
W-FCM overcomes this drawback and performs better than the
other methods.

All the numerical results indicate that W-FCM cannot
only remove noise but also retain much more image fea-
ture details. Furthermore, it does not depend on the type
of noise.

Finally, Table V shows the computational cost on differ-
ent graphs with four algorithms. We artificially added 20%

TABLE V
COMPUTATIONAL COST (IN SEC.) ON DIFFERENT GRAPHS

SPIN to images on graphs. Among them, γ -FCM is the least
time consuming. Since the computation of the wavelet frame
transform increases the data space, the proposed algorithm is
the most time consuming. Nevertheless, on account of its better
performance for segmentation of images on graphs than other
algorithms, this drawback can be tolerated. In conclusion,
compared with other FCM-related algorithms, the W-FCM
exhibits a wide range, almost 0.4%–16%, of improvements on
segmentation accuracy values in the presence of various levels
of noise. Furthermore, as tight wavelet frames provide a new
way to analyze and manipulate data effectively, the proposed
algorithm can be further applied to other similar fields.

VI. CONCLUSION

As many practical applications emerge, image processing
in irregular domains, such as graphs has received much atten-
tion. It provides new insights into signal processing. In this
paper, we propose a wavelet frame-based FCM algorithm for
segmenting images on graphs. To enhance the robustness of
the original FCM algorithm, image data on graphs are fil-
tered by using spatial information. Since a tight wavelet frame
system is able to give redundant representations of images,
we can utilize it to obtain feature spaces of images on graphs.
Combining the original and filtered features, the FCM algo-
rithm is used for segmenting images on graphs contaminated
by noise of different intensities. The effectiveness of the algo-
rithm is presented through numerical experiments. Finally, the
following conclusions are drawn.

1) Tight wavelet frames-based FCM algorithm has accept-
able computation complexity. Although it has slightly
higher computational cost, its good performance can
offset this drawback.

2) Tight wavelet frames have high adaptability to image
data and noise one and can be used to analyze the char-
acteristics of noise. Therefore, a tight wavelet frames-
based FCM algorithm can effectively remove noise and
retain feature details in images on graphs.

3) Numerical results demonstrate that the proposed tight
wavelet frames-based FCM algorithm has better seg-
mentation ability than other FCM-related algorithms.
Therefore, the proposed algorithm has a wider range of
applications.

Numerical experimental results indicate that the proposed
algorithm can be effectively realized in practice. It can be
applied to other similar fields. There are some open problems
worth pursuing. For example, in a future study, its applica-
tion areas could be expanded by involving computer networks,
social networks, or transportation networks [31], which can all
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be visualized as graphs in which the vertices stand for individ-
ual computers, people, or cities, respectively. Moreover, more
real-world noisy data could be handled with the proposed algo-
rithm so as to describe the effects of removing the measured
noise in images on graphs more effectively.
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