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Abstract. Surface denoising is a fundamental problem in geometry processing
and computer graphics. In this paper, we propose a wavelet frame based

variational model to restore surfaces which are corrupted by mixed Gaussian

and impulse noise, under the assumption that the region corrupted by impulse
noise is unknown. The model contains a universal `1 + `2 fidelity term and an

`1-regularized term which makes additional use of the wavelet frame transform

on surfaces in order to preserve key features such as sharp edges and corners.
We then apply the augmented Lagrangian and accelerated proximal gradient

methods to solve this model. In the end, we demonstrate the efficacy of our

approach with numerical experiments both on surfaces and functions defined
on surfaces. The experimental results show that our method is competitive

relative to some existing denoising methods.

1. Introduction. Triangulated surface models are widely used in many fields such
as computer graphics, reverse engineering, architectural design and terrain mod-
elling. Compared with other surfaces, such as parametric and implicit surfaces,
mesh surfaces are quite easy to obtain and operate. Additionally, they can approx-
imate surfaces with arbitrary topology and geometry [2]. Such surfaces are usually
acquired by 3D measurement technologies such as digital scanning devices which
produce depth maps and ship-based sonar. Due to physical scanning processes and
algorithm errors, measured mesh surface models often contain kinds of noise [24].
The noise may severely affect the usability of mesh models, and it is often desirable
to remove noise to obtain high-quality surfaces before further processing. The main
challenge in this task is to reduce noise and artifacts from an observed mesh surface,
while preserving key features such as sharp edges and corners.

The mathematical model for mesh surface denoising can be stated as follows.
We denote a triangular mesh by M = (V, E ,F), where V = {V (1), · · · , V (n)} is
the vertex set, E = {E(1), · · · , E(e)}, E(i) ∈ V × V is the edge set, and F =
{F (1), · · · , F (f)}, F (i) ∈ V × V × V is the triangular face set. Here, let V (i) =
(V1(i), V2(i), V3(i))T be the (x, y, z)-coordinates of the vertex V (i). We are inter-
ested in computation of a piecewise smooth function S : M → Rd on a triangle
mesh. The function S can flexibly be chosen to describe vertex positions, texture
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coordinates, vertex displacements, etc. For a discretization on the triangle mesh,
we formulate S by the vector of sample values at the n mesh vertices

(1) S :M→ [S(V (1)), · · · , S(V (n))].

Let S̃(V (i)) = S(V (i)) + εiNi be the observed noisy surface where εi is a random
variable and Ni := N(V (i)) ∈ R3 is the normal of the mesh for each vertex V (i).
The task of surface denoising is to approximate the true underlying surface S from

S̃.
Surface denoising is a fundamental problem in geometry processing and many

attempts have been made in the past decade. Based on nonlinear diffusion equa-
tions and the theory of geometric evolution problems, some successful models used
for image restoration have been extended to denoising surfaces (see e.g. [5, 6, 7, 11,
16, 27, 28] and the references therein). For instance, in [6] an important geometric
model for surface denoising was proposed using diffusion and curvature flow. More-
over, authors in [11] established a variational model analogous to the ROF model
[23] in the context of geometry processing. Recently, based on the sparsity of the
gradient of the face normal field, a variational model in [31] was proposed for mesh
denoising. Other approaches for surface denoising include the classical Laplacian
smoothing method [2], bilateral filtering [13, 17], normal filtering and vertex updat-
ing [26]. More recently, based on a tight wavelet frame representation of surfaces,
an analysis based surface denoising model was proposed in [9].

When the perturbation in (1) is additive white Gaussian noise, i.e. εi ∼ N (0, σ2),
it is mostly considered in the above literature for its good characterization of system
noise. However, non-Gaussian type noise are also encountered in many real obser-
vations due to noisy sensors and channel transmission [15, 24]. Moreover, although
in image processing, a vast amount of literature is devoted to non-Gaussian noise
problems, such as impulse noise, Poisson noise and mixed Poisson-Gaussian noise
(see [15, 18, 25, 29] and many references therein), there are few studies in surface
denoising with non-Gaussian noise.

In this paper we study how to effectively remove mixed Gaussian and impulse
noise in surface functions. These noises are caused by errors in data transmission
or faulty memory location in hardware. We assume that either additive Gaussian
white noise or impulse noise takes the form of randomly occurring displacement

of the vertices along the normal direction. Mathematically speaking, let S̃ be an
observed corrupted surface, i.e.

(2) S̃(V (i)) =

{
S(V (i)) + ε1N(V (i)) V (i) ∈ V1
ε2N(V (i)) V (i) ∈ V2 := V\V1

,

where V1 is unknown, ε1N(V (i)), V (i) ∈ V1 denotes the independent identically
distributed (i.i.d.) additive Gaussian noise, and ε2N(V (i)), V (i) ∈ V2 denotes the
i.i.d. random-valued impulse noise. The subset V2 denotes the region where the
information of S is missing. It is assumed to be unknown with each element being
drawn from the whole region V = {V (i), · · · , V (n)} by Bernoulli trial with a given
probability 0 ≤ p ≤ 1.

We denote r := |V2|/|V| as the level of impulse noise. If V2 is empty, there is
no impulse noise, then the problem in (2) becomes the surface denoising problem
for removing Gaussian noise. If the region V2 is known in advance, this can be
considered as a mesh repair problem. If V2 is a proper subset of V, the observation

S̃ of a surface function S is said to be corrupted by the mixed Gaussian and impulse
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noise. Under the assumption that the region V2 is unknown in advance, the goal of

this paper is to approximate S from the observed surface function S̃.
The challenge of this problem is to preserve key features of surface functions

such as sharp edges and corners, while removing noise and spurious information
simultaneously. For image processing problems, the variational model

(3) min
u∈Rm×n

F (u) + λΓ(u)

has been successfully applied to image denoising, inpainting, deconvolution, etc (see
e.g. [3, 4, 10, 15, 18, 23, 29, 30]). Here, F (u) is a fidelity term which keeps the image
u close enough to the observed image, Γ(u) is a regularization term for modeling a
priori knowledge on unknown images, and λ is a positive parameter balancing the
two terms. The fidelity term F (u) takes different forms according to different noise
statistics and is designed based on the noise characteristic. For example, it is well
known that the least square fidelity is used for additive white Gaussian noise. Less
well known is the Kullback-Leibler (KL)-divergence fidelity for Poisson noise and
`1-norm fidelity for impulse noise [15, 18]. The regularization term Γ(u) is designed
based on a priori assumption on original image. One of the assumptions commonly
used is the sparsity of the underlying solution in some transformed domain. Such
transforms can be discrete gradient used in total variation [23], wavelet tight frame
transform [3, 4, 10, 18], local cosine transforms, etc.

We here extend the idea of (3) to surface denoising. To remove mixed Gauss-
ian and impulse noise on surfaces, we choose the fidelity term F (S) = ‖S −
S̃‖`1 + λ

2 ‖S − S̃‖
2
`2

, where ‖S − S̃‖`1 :=
∑n
i=1 |S(V (i)) − S̃(V (i))|, ‖S − S̃‖2`2 :=∑n

i=1 |S(V (i))− S̃(V (i))|2, and λ is a parameter. This fidelity term was first intro-
duced in [15] for image restoration with mixed or unknown noises. We choose the
regularization term Γ(S) = ‖WS‖`1 :=

∑n
i=1 |WS(V (i))|, where W is the discrete

wavelet frame transform on surfaces, see Section 2.1 for details. The basic idea be-
hind the regularization term is to make use of the interaction between the wavelet
frame transform and the `1-norm. It is well known that the wavelet coefficient se-
quence of a signal, which is sampled from a piecewise smooth function, is sparse.
Furthermore, because of the `1-norm, the regularization term ‖WS‖`1 gives prefer-
ence to a solution S whose wavelet coefficient sequence is sparse, and to keep the
edges and corners of surface functions. The extension of image restoration model to
surface denoising is not trivial because of the nonlinear nature of the surfaces and
the corresponding algorithm [9, 31].

Combining the fidelity term and the regularization term together, we have the
following wavelet frame based model

(4) minE(S) := ‖S − S̃‖`1 +
λ

2
‖S − S̃‖2`2 + ν‖WS‖`1

for removal of mixed noise on surfaces. The model (4) is an ordinary least squares
problem with an `1-fidelity term and an `1-regularization term. It means that this
problem cannot be solved straight forward by solving only one system of equa-
tions. However, if we write the two `1-terms in a matrix form, (4) becomes a least
squares problem with an `1-fidelity term. Then, iterative solvers like the augmented
Lagrangian method (ALM) can be applied to solve (4).

The rest of this paper is organized as follows. In Section 2.1 we introduce the
wavelet frame transform on surfaces. In Section 2.2 we derive a wavelet frame based
model and the corresponding algorithm to remove the mixed noise on surfaces. In
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Section 3 we present some numerical examples and discussions. In the last section
we give a conclusion.

2. Mathematical modeling and algorithm.

2.1. Wavelet frame transform on surfaces. Before presenting our proposed
regularization for surface denoising, we briefly review a few facts of discrete tight
wavelet frame decomposition and reconstruction. The interesting readers should
consult [9, 10, 19] for a more detailed survey. Note that in the discrete setting,
an image is a 2D array that can be understood as a vector living on a discrete
grid. Then the discrete wavelet tight frame decomposition can be represented as a
matrix multiplicationW, whereW is derived by all the refinement masks (filters) of
a wavelet tight frame system. Correspondingly, by the unitary extension principle
[22], the reconstruction operator WT can be defined similarly by the transpose
of refinement masks and we have WTW = I. In the implementation, these two
matrix multiplications are done by using the fast tensor product tight wavelet frame
decomposition and reconstruction algorithms instead, which are essentially just the
convolution of images by a set of filters.

However, due to the difference of topological structures between surface and im-
age, we can not directly apply wavelet frame transform in image processing to sur-
face denoising. Recently, motivated by the works in [12] which construct non-tensor-
product tight wavelet frames by dual Gramian analysis on Hilbert spaces, Dong et
al. in [9] introduced a multiscale representation of surfaces using a data matrix and a
corresponding wavelet frame matrix. For the triangular meshM = (V, E ,F), let the
vertex set V := {V (k), k = 1, 2, · · · , n}, where V (k) = (V1(k), V2(k), V3(k))T is the
(x, y, z)-coordinates of the vertex V (k). For each k ∈ {1, 2, · · · , n}, if V (k) ∈ V has
degree 6, we find the six neighboring vertices of V (k) and denoted as {P (k, 1), P (k, 2),
· · · , P (k, 6)}, see FIGURE 1. Then for a function S defined on the triangle mesh,

( ,1)
i
P k ( ,2)

i
P k

( ,3)
i
P k

( ,4)
i
P k( ,5)

i
P k

( ,6)
i
P k

( )
i
V k

 

Figure 1. This figure illustrates how the neighboring vertices of
a given vertex Vi(k) are ordered.

a data matrix Fi, i = 1, 2, 3, consisting of the set of neighboring function values is
a matrix in R7×n defined by
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Fi =



S(Vi(1)) · · · S(Vi(k)) · · · S(Vi(n))
S(Pi(1, 1)) · · · S(Pi(k, 1)) · · · S(Pi(n, 1))
S(Pi(1, 2)) · · · S(Pi(k, 2)) · · · S(Pi(n, 2))
S(Pi(1, 3)) · · · S(Pi(k, 3)) · · · S(Pi(n, 3))
S(Pi(1, 4)) · · · S(Pi(k, 4)) · · · S(Pi(n, 4))
S(Pi(1, 5)) · · · S(Pi(k, 5)) · · · S(Pi(n, 5))
S(Pi(1, 6)) · · · S(Pi(k, 6)) · · · S(Pi(n, 6))


,

where (P1(k, j), P2(k, j), P3(k, j))T , j = 1, 2, · · · , 6, is the (x, y, z)-coordinates of
P (k, j). We let F := {F1, F2, F3}. Finally, if the degree d of some vertex is not
6, we can generate 6 neighboring values S(Pi(k, j)) with average values of the d

neighboring values. Let Ŝ(Pi(k, t)), t = 1, . . . , d be the d neighboring values. Then,

we set S(Pi(k, j)) = 1
6

∑d
t=1 Ŝ(Pi(k, t)), j = 1, 2, · · · , 6.

Following [9], we define a mask matrix M in R7×7 as

M =
1

8



2 1 1 1 1 1 1
2 −1 −1 1 −1 −1 1
2 1 −1 −1 1 −1 −1
2 −1 1 −1 −1 1 −1

0 − 2
√
3

3 − 2
√
3

3 − 2
√
3

3
2
√
3

3
2
√
3

3
2
√
3

3

0
√
6
3

√
6
3 − 2

√
6

3 −
√
6
3 −

√
6
3

2
√
6

3

0
√

2 −
√

2 0 −
√

2
√

2 0


.

Here, the first row of M is a low-pass filter and 2 − 7th row of M are high-pass
filters. This set of filters (refinement masks) of tight wavelet frames was constructed
in [12] by linear bivariate box spline with directions (1, 0)T , (0, 1)T and (1, 1)T .

Noting that the order of the coefficients of each filter in M is harmonious with
the neighborhood of the vertex V (k) which forms the column of the data-matrix.
We define the (1-level) wavelet frame decomposition on a mesh surface as

(5) WS := MF = {MF1,MF2,MF3} = α,

where α := {α1, α2, α3} with matrix αi = MFi. Similarly, the reconstruction
operator R can be defined as

Rα = δ0M
−1α,

where δ0 := [1, 0, 0, 0, 0, 0, 0]. It is easy to check that the vector r := [1, 1, 1, 1, 0, 0, 0]
is the first row of M−1 and

rM = δ0 = [1, 0, 0, 0, 0, 0, 0].

Then, for numerical simplicity, we define R as

R(α) = r(α) = {r(α1), r(α2), r(α3)}.
Thus, we have RWS = S. We omit discussions on high-level wavelet frame trans-
form on surfaces here and the interested reader is referred to [8, 9] for details.

2.2. Model and algorithm. For a given triangular meshM and a noisy function

S̃ defined on M, our task is to remove the mixed Gaussian and impulse noise

from S̃. Here, the function S̃ can be chosen to describe vertex positions, vertex
displacements, a piecewise smooth function on a two dimensional smooth manifold,
etc. Motivated by the impressive performance of wavelet frame image restoration
methods (see e.g. [3, 4, 10, 18, 19, 25, 30]), we also use the wavelet frame coefficients
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to build a new characterization of functions on mesh surfaces with key features. To

remove the mixed noise from S̃, we consider the following variational model

(6) min
S
‖S − S̃‖`1 +

λ

2
‖S − S̃‖2`2 + ν‖WS‖`1 ,

where λ and ν are two positive parameters and W is the wavelet frame transform
on surfaces. The first two terms of (6) are the fitting terms with

‖S − S̃‖`1 :=

3∑
i=1

n∑
j=1

|S(Vi(j))− S̃(Vi(j))|

and

‖S − S̃‖2`2 :=

3∑
i=1

n∑
j=1

|S(Vi(j))− S̃(Vi(j))|2.

The last term of (6) is a regularization term with

‖WS‖`1 := ‖α‖`1 =

3∑
i=1

n∑
j=1

(

7∑
`=2

|αi[`, j]|2)
1
2 ,

which was defined by (5).
Since the optimization model (6) is a least squares problem with an `1-fitting

term and an `1-regularization term, this problem cannot be solved straight forward
by solving only one system of equations. To apply certain fast iterative solvers for
this `1/`2-problem, we first replace (6) with the following matrix form:

(7) min
S

λ

2
‖S − S̃‖2`2 + βT |AS − C|,

where

A :=

(
I
W

)
, C :=

(
S̃
0

)
, β :=

(
e
νê

)
,

I is an identity matrix, e and ê are vectors of ones, and | · | denotes a column vector
of absolute values. Next, we reformulate (7) by introducing a new variable Z:

(8) min
S,Z

f(S,Z) :=
λ

2
‖S − S̃‖2`2 + βT |Z|, s.t. AS − C + Z = 0.

In the following, we apply the augmented Lagrangian method (ALM) [21] to
solve (8). First, let us define the augmented Lagrangian function of (8) associated
with a given parameter σ > 0:

Lσ(S,Z; y) : = f(S,Z) + 〈y, C −AS − Z〉+
σ

2
‖C −AS − Z‖2`2

= f(S,Z) +
σ

2
‖C −AS − Z +

1

σ
y‖2`2 −

1

2σ
‖y‖2`2 .

Then, the ALM for solving (8) is summarized as follows:
Here, we choose the calculation error ε = 10−4. The main task of ALM iteration

is to solve the inner subproblem

min
S,Z
Lσk

(S,Z; yk)(9)

= min
S,Z

λ

2
‖S − S̃‖2`2 + βT |Z|+ σk

2
‖C −AS − Z +

1

σk
yk‖2`2 −

1

2σk
‖yk‖2`2 .
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Algorithm 1 ALM Algorithm

Initialize: Given a tolerance ε > 0. Input y0, y−1 and σ0 > 0. k = 0.
while ‖(yk − yk−1)/σk‖ ≥ ε do

(Sk+1, Zk+1) = arg min
S,Z
Lσk

(S,Z; yk)

yk+1 = yk + σk(C −ASk+1 − Zk+1)
σk+1 = σk + 1
k = k + 1

end while

First, for fixed S, we consider the minimization of Lσk
(S,Z; yk) in terms of Z. Let

η := σk(C −AS) + yk.

Then, the minimization of Lσk
(S,Z; yk) is equivalent to

min
Z

1

σk
βT |Z|+ 1

2
‖Z − η

σk
‖2`2 ,

which has a closed form solution given by:

(10) Z =
1

σk
Tβ(η).

Here, for β > 0, Tβ is the soft-threshold operator

Tβ(η) := [tβ1
(η1), tβ2

(η2), . . . , tβM
(ηM )]T ,

with tβi
(ηi) := sgn(ηi) · max{|ηi| − βi, 0}. Note that Tβ(η) is composed of two

parts: one is thresholding on the surface function values, Te(σk(S̃ − S) + yk1 ); the
other is thresholding on the wavelet frame coefficients, Tνê(σk(WS) + yk2 ). Here,
yk := (yk1 , y

k
2 )T .

Substitute (10) into (9), one can check that

(11) min
Z

βT |Z|+ σk
2
‖C −AS − Z +

1

σk
yk‖2`2 =

1

σk

∑
i

φβi
(ηi),

where φε(t) is the Huber function defined by

φε(t) :=


1

2
t2 |t| ≤ ε

ε|t| − 1

2
ε2 |t| > ε

,

η = (η1, η2, . . .)
T and β = (β1, β2, . . .)

T .
Therefore, to solve the subproblem (9), we need to find the optimal S of the

following unconstrained convex optimization problem

(12) min
S
H(S) :=

1

σk

∑
i

φβi
(ηi) +

λ

2
‖S − S̃‖2`2 .

Following [14], we apply the accelerated proximal gradient (APG) method [10, 20]
to solve (12), where the gradient of H is given by

∇H(S) = −AT (η − Tβ(η)) + λ(S − S̃).

Note that A has full column rank and H(S) is a strictly convex function. Hence,
the above minimization has a unique solution.

Inverse Problems and Imaging Volume 11, No. 5 (2017), 783–798
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The APG algorithm is summarized as follows:

Algorithm 2 APG Algorithm

Initialize: Given S0 = S1 = S̃, t0 = t1 = 1, τ = 1
for i = 1 to p do
S̄i = Si + ti−1−1

ti
(Si − Si−1)

Si+1 = S̄i − τ∇H(S̄i)

ti+1 =
1+
√

1+4(ti)2

2
end for

Here, we choose the number of iterations p = 25, and the step length of APG
algorithm τ = 1. In conclusion, the ALM-APG algorithm for solving (6) is summa-
rized in Algorithm 3.

Algorithm 3 ALM-APG Algorithm

Initialize: Given ε > 0, S0 = S̃, y0 = y−1 = ~0, τ = 1, σ0 = 1, k = 0
while ‖(yk − yk−1)/σk‖ ≥ ε or k = 0 do

Let S0 = S1 = Sk, t0 = t1 = 1
for i = 1 to p do
S̄i = Si + ti−1−1

ti
(Si − Si−1)

Si+1 = S̄i − τ∇H(S̄i)

ti+1 =
1+
√

1+4(ti)2

2
end for
Set Sk+1 = Sp+1, Zk+1 = 1

σk
Tβ(σk(C −ASk+1) + yk)

yk+1 = yk + σk(C −ASk+1 − Zk+1)
σk+1 = σk + 1
k = k + 1

end while

3. Numerical results and discussions. In this section, we present numerical
experiments and compare our method with certain existing methods to verify the
effectiveness of our method. The synthetic data are generated by clean functions on
meshes with additive Gaussian noise and impulse noise. The meshes are normalized
before test. All the examples are tested on a laptop with Intel Core i3 and 6 GB
RAM and all models are rendered using flat shading.

We provide three kinds of numerical experiments to test the performance of
our method for suppressing Gaussian and impulse noise, and then compare its
performance with recently proposed algorithm in [31] and other variational models.
The methods are abbreviated as Zhang et al.’s method [31], `2-variational model,
`1-variational model and our (`2 + `1)-variational model in the following. Denoising
results of the algorithm in [31] are kindly provided to us by the authors.

There are two common types of impulse noise: salt-and-pepper impulse noise and
random-valued impulse noise. Since a vertex coordinate contaminated by random-
valued impulse noise is not as distinctively an outlier as that contaminated by the
salt-and-pepper noise, it is more difficult to detect. Thus we only consider the
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random-valued impulse noise, which is defined as follows: with probability r, the
function value S(V (i)) on vertex V (i) is altered to be an uniform random value in the
interval between the minimum and maximum value of the surface. With probability
1 − r, the function value S(V (i)) on V (i) is disturbed by additive Gaussian noise
N (µ, σ2). The mixed noise level of following examples are given by three parameters
r, µ and σ.

3.1. Numerical examples. In this subsection, we show the experimental pro-
cesses and results on surface denoising of our method. In the first experiment, two
noisy surfaces, named ‘elephant’ and ‘bunny’, are simulated by displacement of the
vertices along the normal direction (see FIGURE 2). We first add mixed Gauss-
ian and impulse noise to clean surfaces, then apply our approach to remove noise.
Denoising results are illustrated in FIGURE 2.

Figure 2. The elephant model (first row) and the bunny model
(second row) are artificially corrupted by mixed Gaussian and im-
pulse noise (r = 20%, µ = 0, σ = 0.005), then smoothed by our
approach (λ = 11, ν = 0.2). From left to right: noisy-free surfaces,
noisy surfaces, denoising surfaces.

In the second experiment, we test the performance of surface function denoising.
First, we choose manifold Ω1 to be the unit sphere in R3 and define a function on
Ω1 as

S1(x, y, z) := 1 + x8 + e2y
3

+ e2z
2

+ 10xyz.

As in [1], we visualize this function as a kind of offset surface to the manifold, i.e.,
we consider the new surface as

ξ + S1(ξ)Nξ : ξ ∈ Ω1,

where Nξ denotes the unit outer normal to the manifold Ω1 at ξ, see FIGURE 3.
Similarly, we choose manifold Ω2 to be the ‘twelve’ model and define function

S2(x, y, z) := [1 0 0]T .

Then, we obtain a new surface defined by

ξ + S2(ξ). ∗Nξ : ξ ∈ Ω2.

Inverse Problems and Imaging Volume 11, No. 5 (2017), 783–798
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The new noisy-free surfaces are illustrated in the first column of FIGURE 3.

Figure 3. From left to right: noisy-free surfaces, noisy surfaces,
denoising surfaces (r = 40%, µ = 0, σ = 0.2, λ = 11, ν = 0.2).

In the last experiment, we consider a graph G, and the vertices set V of G are
sampled from a unit sphere. The functions fG : V 7→ R are generated by mapping
two images, ‘Slope’ and ‘Eric Cartman’, onto the graph G (see FIGURE 4). Let the
observed graph data be perturbed by the mixed noise along the normal direction.
The denoising results are presented in FIGURE 5.

Figure 4. This figure shows two images (first row), ‘Slope’ and
‘Eric Cartman’, that are mapped to the graph of the unit sphere
to form graph data fG (second row).

3.2. Comparisons to Zhang et al.’s method. In this subsection, we present
comparative results for removal of mixed Gaussian and impulse noise between Ours
and Zhang et al.’s method [31]. It keeps consistent in all parameters of noise level
between the two methods.

In FIGURE 6, we show the different performance between Ours and Zhang et
al.’s method of the first experiment in Section 3.1. FIGURE 6 shows that our
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Figure 5. From left to right: noisy-free surfaces, noisy surfaces,
denoising surfaces (r = 20%, µ = 0, σ = 0.02, λ = 0.8, ν = 0.035).

Noisy Zhang et al.’s results[31] Ours

Figure 6. From left to right: noisy surfaces, Zhang et al.’s results
[31], Ours (r = 20%, µ = 0, σ = 0.005). The 2nd row and 4th row
show zoomed view of surfaces.

method can preserve most sharp edges and corners better (see the zoomed view in
FIGURE 6). In addition, we can also keep the shallow edge well.

In FIGURE 7, we present results and comparisons of the second experiment in
Section 3.1. A zoomed view of the region indicates that Zhang et al.’s method

Inverse Problems and Imaging Volume 11, No. 5 (2017), 783–798
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Noisy Zhang et al.’s results [31] Ours

Figure 7. It shows denoising results. From left to right: noisy
surfaces, Zhang et al.’s results, Ours (r = 40%, µ = 0, σ = 0.2).
The 2nd row and 4th row show zoomed view of surfaces.

generates false edges in smooth regions (see second column of FIGURE 7). In
contrast, our method can keep features well.

Table 1. SNRs Comparison for removal of mixed Gaussian and
impulse noise

Model Zhang et al.’s Ours
FIGURE 6 Row 1 43.735 45.035
FIGURE 6 Row 3 43.985 44.876
FIGURE 7 Row 1 42.833 45.565
FIGURE 7 Row 3 40.658 43.035

The quality of the denoised result S(V ) can also be measured in terms of signal-
to-noise ratio (SNR), which is defined by

SNR(S(V ), S(V )) = −20 log10

‖S(V )− S(V )‖`2
‖S(V )‖`2

,

where S(V ) denotes the noisy-free surface functions. For the examples shown in
FIGURE 6 and FIGURE 7, SNRs are computed and listed in TABLE 1. In conclu-
sion, visual and quantitative comparisons illustrate the better performance of our
method.
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3.3. Comparisons to other variational models. In order to highlight the ef-
fectiveness of our model, we here compare our method with `2-variational model,
i.e.

min
S

1

2
‖S − S̃‖2`2 + ν‖WS‖`1

and `1-variational model, i.e.

min
S
‖S − S̃‖`1 + ν‖WS‖`1 .

Comparative results are listed in TABLE 2 and FIGURE 8-10.

`2-variational model `1-variational model Ours

Figure 8. From left to right: results of `2-variational model, re-
sults of `1-variational model, Ours. The 2nd row and 4th row show
zoomed view of surfaces.

Table 2. SNRs Comparison with other variational models

Model `2-variational model `1-variational model Ours
elephant 42.858 43.064 45.035
bunny 43.027 43.356 44.876

Ω1 42.024 42.410 45.565
Ω2 40.674 40.787 43.035

Slope 28.688 29.647 31.231
Eric Cartman 29.063 29.953 31.087

Inverse Problems and Imaging Volume 11, No. 5 (2017), 783–798
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`2-variational model `1-variational model Ours

Figure 9. It shows denoising results. From left to right: results
of `2-variational model, results of `1-variational model, Ours. The
2nd row and 4th row show zoomed view of surfaces.

`2-variational model `1-variational model Ours

Figure 10. From left to right: results of `2-variational model,
results of `1-variational model, Ours.

4. Conclusion. In this paper, we proposed a tight wavelet frame based model to
simultaneously suppress mixed Gaussian and impulse noise on surfaces, under the
assumption that the impulse noise region is unknown. We considered both surfaces
and functions defined on surfaces. Based on topological structure of surfaces, we first
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defined wavelet frame transform on surface functions. Then we applied the ALM-
APG algorithm to solve the proposed model. In addition, we implemented three
kinds of experiments to verify the practicability and effectiveness of our method.
In the end, we compare our approach with Zhang et al.’s method [31] and other
variational models. Results showed the efficacy of our method.

Acknowledgments. The authors are grateful to the editor and referees for their
valuable comments and suggestions that led to the improvement of this paper.
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